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Abstract: We consider the Dirich let problem in the unit disc for the linear partial 

differential equation with constant coefficients. The formulas for the determination 

the defect numbers of the problem were found, and for the improperly equation was 

determined the functional class, were this problem is Notherian.  

 
Let D  be a unit disk of the complex plane and = D  . We consider an ellipt ic 

equation

 
 

22

2
=0

= 0, ,
NN

k k N k
k

U
A x y D

x y 




 
 ,  (1) 

where
kA  are complex constants  0 0A  , such that the roots j , =1, ,2j N  

of the characteristic equation 
2

2

=0

= 0
N

N k

k

k

A   ,        (2) 

satisfy the conditions 

              
> 0, =1, , , < 0, = 1, ,2k kk P k P N    .       (3) (3) 

The solution U  of the equation (1) (in the class      1,2 NNC D C D


 ) 

satisfies Dirichlet conditions: 

             

   = , , , , = 0, , 1
k

kk

U
f x y x y k N

r



 


           (4)   

  
on the boundary  . 
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Here 
     1,

, = 0, , 1
N k

kf C k N
 

    are g iven functions on  , 
r




 is 

the derivative with respect to the inner normal to  . 

The cases P N  (the equation (1) is properly elliptic) and P N  when the 

equation (1) is improperly elliptic, are sufficiently d ifferent. If the equation (1) is 

properly elliptic, then the problem (1),(4) is Fredholmian (see [Tovmasyan 1998], 

[Lions, Madgenes 1968]). In this case we want to define necessary and sufficient 

unique solvability conditions and the defect numbers of the problem if these 

conditions fail. In this paper we denote by defect numbers the numbers of linearly 

independent solutions of homogeneous problem (when 0kf   for all k ) and the 

number of linearly independent conditions to the boundary functions 
kf , when 

inhomogeneous problem has a solution. For improperly elliptic equation (1) the 

Dirich let problem (1), (4) (as all classical boundary value problems) is neither 

Fredholmian nor Notherian (see [Bitcadze 1961]). More precisely, this problem is 

not normal solvable, and for some values of coefficients, this problem may have 

infinite defect numbers. In this case we want to define the solutions of homogeneous 

problem and the class of boundary functions for which the inhomogeneous problem 

has a solution. In the paper we present some results for the problem (1), (4) in case 

of ellipt ic equation (1), and some considerations about homogeneous problem for 

not ellipt ic equation (1) (when some roots j of characteristic equation (2) may be 

real). 
We start from the elliptic case. In the paper [Tovmasyan 1969] complete research of 

the Dirichlet prob lem for the system of second order ellipt ic equations with constant 

coefficients in elliptic domains was conducted. The defect numbers were defined in 

explicit form. The difference between weakly and strongly connected elliptic 

systems was found. It was shown that the defect numbers are finite and the problem 

is Fredholmian for weakly connected systems and neither Fredholmian nor 

Notherian for strongly connected system. The second order improperly elliptic 

equation: the equation (1) for =1N , if the roots of equation (2) satisfy the 

conditions 
1 > 0 , 

2 > 0  (or strongly connected system of 2nd order) was 

studied in [Tovmasyan 1968]. The Dirichlet problem for this equation in the unit 

disc was completely researched. The conditions on the coefficient of the equation 

(1), for which the homogeneous Dirichlet problem (1), (4) has infin ite number of 

linearly independent solutions, were found. In the first time was presented the 

functional class where this problem is Notherian. The formula of the general 

solution of the equation (1) makes it easier to research the problem in the unit disc 

and the representation of this solution on the unit circumference was also found in 

this work.  
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Lemma. [Tovmas yan 1968]. Let <1  and function   is analytic in the domain 

   = : <1D z z z   and is from the class     C D


 . Then for = 1z  

the function  z z   may be represented in the form 

        
=0

= , = .k

k

n

z z z z z D z    


                           (5) 

The function   is uniquely determined by the function  : 

 
2 24 4

=
2 2

     
  

      
    
   
   

                      (6) (6) 

Here  D   and we get a branch of the root, for which 
1 2 4 1    

 for   . 

Using this lemma, it  is possible to reduce the problem (1), (4) to algebraic problems. 

To explain this we consider the simplest case - =1, 1N P  . Let’s denote 

1 1
1 2

1 2

,
i i

i i

 
 

 

 
 

 
,                                                            (7) 

where j  are the roots of the equation (2). Then the solution of the equation (1) 

may be represented in the form 

       1 1 2 2
, , , ,u x y z z z z z x iy x y D         ,                 (8) (8) 

where
 

j are constants (7) (taking into account the condition 
1 20     , we 

have 1j  ), and the unknown functions j , 1,2j   are analytic in the 

domains    1 1= : <1D z z z   and    2 2= : <1D z z z 

correspondingly. Substituting the representation (8) in the boundary condition (4) 

(for =1, 1N P   it remains the only condition) we get 

     1 1 2 2 0 , 0 2i i i ie e e e f               .                      (9) (9) 

Now, using lemma, represent the functions j , 1,2j   via functions, analytic in 

the unit disc: 

     

     

1 1 1 1 1

2 2 2 2 2

,

, 0 2

i i i i

i i i i

e e e e

e e e e

   

   

   

     

 

 

   

     
                 (10) 
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The functions 
j  are analytic in the unit disc, and, therefore, may be expanded via 

the Taylor series; since the function 
0f  belongs to the class of Holder continuous 

functions it may be represented via the Fourier series. We get 

   0

0

, 1, 1,2; .k ik

j jk k

k k

z A z z j f d e  
 

 

       

                                                                                                        (11) 
Let’s  substitute the representations (10) and (11) in the boundary condition (9)  : 

1 1 1 2 2 2

0 0 0 0

, 0 2

ik k ik ik k ik

k k k k

k k k k

ik

k

k

A e A e A e A e

d e

   



 

 

   
 

   





  

  

   


. 

This equality holds for all points of the unit circumference, therefore, coefficients of 

corresponding powers of , 0, 1, 2,ike k    from the left and right parts of the 

equality must be the same. We get 

1 2 2

10 20 0

1 1 2

, 1; 2 2

k

k k k

k

k k k

A A d
k A A d

A A d



 

  
  

 
.                           

                                                                                               (12) 
Thus, the problem (1), (4) is reduced to the systems (12). The determinant of the 

main matrix of the system (12) is equal 

 2

1 2

1

1
1 0, 1,2,

1

k
k

k k
k


 


      .                                   (13)

 
Since 1j   these determinants are not equal to zero. So, we determine the 

coefficients 
1 2,k kA A  for  1k   uniquely. The determinants 

k  tend to one for 

k  , hence the corresponding functions j  and the boundary function 
0f  

belong to the same functional class. After determination of the functions j , using 

lemma, we get the functions j  and therefore, uniquely determine the solution of 

the corresponding problem (1), (4). We cannot determine the coefficients 
10 20,A A  

because we have only the sum of these coefficients, but it is enough for the 

uniqueness of the problem. Thus, the
 
Dirich let problem (1), (4) for the properly  

elliptic equation (1) is uniquely solvable (this result was proved earlier, using 

another method, see, for example, [Lions, Madgenes 1968]).  
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Let’s consider the case of the second order improperly elliptic equation - 

2, 2N P  . We suppose, that 
1 2 , 0,j j i        . In this case, 

denoting 

                                  

j

j

j

i

i










, 1, 2j  ,                                                  (14) 

we present the general solution of the equation (1) in the form:  

     1 1 2 2, ,u x y z z z z        , ,z x iy x y D                  

                                                                                                                                 (15) 

Now, using the considerations, analogous to the case of properly elliptic equation 

(1), we reduce the problem (1), (4) to the system: 

1 2

10 20 0

1 1 2 2

, 1; 2 2
k k k

k k

k k k

A A d
k A A d

A A d  

 
  

 
.                                      (16)

 
In this case the determinant of the system has following form: 

2 1

1 2

1 1
k k

k k k
 

 
    , 

Therefore we have the following result: 
Theorem [Tovmas yan 1968]. We consider (1), (4) problem for 2N P  . We 

suppose, that 
1 2  , j i   , 0j  . Let’s define j  by the formulas (14). 

Without loss of generality we suppose that 2 1   and introduce  1,1 1A   - 

class of functions, analytic in the ring 1 1z    and satisfying Holder condition 

in the closed ring 1 1z   . Then  

1) If  1

1 2exp 2 imn    for integers m  and n , then the 

homogeneous problem has infinitely many linearly independent 

solutions and for the solvability of inhomogeneous problem it is 

necessary for the boundary function 
0f  to satisfy infinitely many 

linearly independent conditions. 

 

2) If  
1 1

1 22 arg  
 

 is an irrational number, or 1 2   then the 

homogeneous problem has a unique solution for arbitrary boundary 

function from the class  1,1 1A  . 

 

Other cases of the location of the roots in this paper were considered too. And it 

must be mentioned that the functional class from this article, where classical  
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boundary value problems for improperly ellipt ic equations may be considered, was 

defined for the first time. 

After that investigations were continued for properly elliptic equation (1).  

In [So ldatov 2005] the unique solvability of the Dirichlet problem for the second 

order elliptic system was investigated. For the fourth order properly elliptic equation 

= 2, 2N P   the necessary and sufficient conditions for the (1), (4) problem's 

unique solvability were found in [Babayan 1999] and [Buryachenko 2000]. The 

analogous result for higher order equation (if the characteristic equation (2) has only 

simple roots) was achieved in [Babayan 2004], [Tovmasyan 2002], [Burskii, 

Buryachenko 2005]. The properly elliptic equation, when the mult iplicity of the 

roots of equation (2) is not greater than two, was considered in [Irician 2003]. If the 

unique solvability fails, in [Babayan 1999], [Babayan 2004], [Tovmasyan 2002], 

[Irician 2003] the formulas for the determination of the defect numbers of (1), (4) by 

the coefficients of (1) were found. In [Tovmasyan 2002] the problem (1), (4) was 

researched in arbitrary multip ly connected domain (it was reduced to a second order 

Fredholm equation). In all these articles it was supposed, that mult iplicity of the 

roots of the equation (2) is not greater than two. The problem was, that the known 

formulas for representation of the general solution of the equation (1) ([Bicadze 

1966], [Vekua 1948], [Tovmasyan 1998]) do not «work well» in the case of higher 

multip licity of the roots of characteristic equation (2).  

In [Babayan 2003] the representation of the general solution of equation (1), which 

is appropriate for the cases of simple and multip le roots, was found. 

  

General solution of the equation (1) 

 
Let us represent the equation (1) in the complex form, using operators of complex 

differentiation 

1 1
= , = , = .

2 2
z x iy i i

z x y z x y

        
     

        
 

The equation (1) is reduced to the form 

=1 =1

= 0,

l mp qk j

k j

k j

U
z z z z

 
      
    

      
                                   (17) 

where 

j

j

j

i

i










 for 0j   and 

j

j

j

i

i










  for 0j                               (18) 

=1 =1

= , = 2 , <1, =1, , <1, =1,
p q

k j k j

k j

l P m N P k p j q   . 

The general solution of (1) may be represented in the form: 
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     
=1 =0 =1 =0

11

, =

ma blp q jk

ka k kb k

k a j b

U x y z z z z 
 


    

       
    

             

 
                                                                                                         (19) 

Using these notions, the unique solvability conditions of the problem (1), (4) for 

properly elliptic equation (1) may be written in following form [Babayan, 2003].  

If 
k  has the multip licity 

kl , and 
j  has the multip licity 

jm , then we define the 

N  - dimensional vectors 

 1 1

1 1= , , , ,0, ,0
T

s s N s s s

k N k s k sa C C C   

 
,                                          (20) 

 

 1 1

1 1= 0, ,0, , , ,
T

t t t t N t

j t t j N jb C C C   

 
,                                                  (21) 

where 0 1ks l   , =1, ,k p  and 0 1jt m   , =1, ,j q . Let A  and 

B  be a square matrices of order N  

   1 1 1 1 11 2 1
1 1 2 2 1 1= , =

l ml l mp q

p p q qA a a a a a a B b b b b ,          (22)                

and M , H  are Jordan matrices 

         1 1
1 1

= , =l l p m m q
p q

M diag J J H diag J J    .       (23) (23) 

Here  kJ   is a Jordan block of o rder k  with diagonal elements  . 

The problem (1), (4) is uniquely solvable if and only if the matrix  

                            

=
l

l l

A BH

AM B

 
  

 
                                                             (24) 

is non-singular for = 1, 2,l N N  , i.e. 

               
= 0, = 1, 2, .l ldet l N N                                          (25) 

If for some 
0 1k N   we get 

0
= 0k , then the homogeneous problem has a 

solution, which is a polynomial of order 
0 1N k  . The boundary functions in this 

case must satisfy one orthogonality condition for the solvability of inhomogeneous 

problem. Therefore the defect numbers of the problem (1), (4) will be determined by 

the formula: 

                 

 1 2

= 1

= = 2 l

l N

K K N rank




                                                       (26) 
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In these formulas it was supposed, that all roots are not equal i . Th is case was 

considered earlier ([Vekua, 1948], [Tovmasyan, 1998]). In our notations, if some 

root is equal i  with mult iplicity k  then in the matrix 
i  matrix column 

 0
T

kI  (where 
kI  is a k  order unit matrix) must be added from the left o r 

matrix column  0
T

kI from the right correspondingly. 

Example. For = 2N  in the case of properly elliptic equation (1), supposing 

1 2  , 0, 1,2j j    
3 4  , 0, 3,4j j   , we determine j  and 

j  by the formulas (18) and the matrix (24) 
k  has the form: 

 

1 1

1 2

1 2 1 2

1 2 1 2

1 1

1 2

1 1

= , = 3,4,

1 1

k k

k k

k k k

k k

k

 

   

   

 

 

 

 
 
 
 
  
 

                         (27)                                  

 
and in (27) 

1 2

1 2

1 1
= , = ,

1 1
A B

 

 

   
   

  
  

1 1

2 2

0 0
= , =

0 0
M H

 

 

   
   
   

.

 
The case of improperly ellipt ic equation may be considered in the same way. In 

[Babayan 2007] fourth order equation (1) was investigated. In this article it was 

shown that the different locations  of the roots reduce to different results about 

solvability of the problem (1), (4). As an example, let’s formulate one of the 

obtained results. 

Theorem. We consider the case 
1 2 3    , , 0j ji    , for 1,2,3j  ; 

4 i   , 
4 0  . In this case equation (1), using notions (18) is reduced to the 

form: 

 
2

1 2 0, ,U x y D
z z z z z z

  
         
        

         
.           

                                                                                                    (28) 
We represent the Dirichlet boundary conditions in equivalent form:  

         1 2= , , = , , , ; 1,0 = 1,0
u u

F x y F x y x y u f
z z 

 


 

                                                                                                                     (29)
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Here

   

     1 , = , , ,
2

z f
F x y g x y i x y



 
 

              

     2 , = , , , = .
2

iz f
F x y g x y i x y z re 



 
  

 
                             (30)

 
 

 

Let’s denote 

 

 

1

1 2

1 2 1

1 1 2

1 1

1 1 2

1 0 1

1
, , det

1 1

det , 3,4,

k

k

k k k k

k k k

k

k

k

k



  
  

   

  





 

 
 
  
 
 
  

  

. 

Then the homogeneous problem (28), (29) has a finite number of linearly 

independent solutions, which are defined by the formula  

                   

 0

3

4 k

k

N rank




   .                                              (31) 

For the solvability of the inhomogeneous problem it is necessary for the functions 

(29) jF  ( 1,2j  ) to be analytic in the ring 1z    and sufficient, that these 

functions satisfy Hölder condition in the closed ring 1z   with their first order 

derivatives. 

It must be mentioned, that in case of fourth order improperly elliptic equation (1) an 

appropriate set of boundary functions for the normal solvability of the problem (1), 

(4) is the set  2,2A   of functions analytic in the ring 1z    and with first 

order derivatives satisfying  Holder condition in the closed ring 1z    

(compare with the set  1,1 1A   from [Tovmasyan 1968]).  

Unique solvability of the Dirichlet problem was considered not only for ellipt ic 

equation (1). In the papers [Bourgin, Duffin 1931], [John 1941], [A lexandryan 

1960], [Hovsepyan 1969] the conditions of nontrivial solvability of the 

homogeneous problem for the second order hyperbolic equation in the different 

domains were found. Further, in the [Burskii 2002] "equation-domain duality 

relation" was proved which in our case has the form: 

           
2

1 = 0, 1 = 0
N

N

xL D x u x L v  
      

. 
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It was shown that every nontrivial polynomial solution of the second equation 

corresponds to the nontrivial polynomial solution of the original equation. Using this 

result the Dirichlet prob lem nontrivial solvability question for arbitrary (may be not 

elliptic) equation (1) was investigated in [Buryachenko 2000], [Burskii 2002], 

[Burskii, Buryachenko 2005], [Buryachenko 2010].  

We consider the problem (1), (4) in the unit disc. In all cases we get, the 

homogeneous problem may have polynomial solutions only. The analogous results 

may be proved in elliptic domains too. In some sense this shape of domain is 

important. To see that, we must mention the article [Chamberland, Siegel 2000] 

were was proved, that the problem 

     20, , ; , ,u x y u x y f x y    , on  , 0x y  , 

where ,f   are polynomials, has the polynomial solution u , such that 

deg degu f  for arbitrary po lynomial f  only in the case deg 2 , that is, 

the boundary of the considered domain must be the second order curve. 

Thus, we get the formulas (26) for the determination of the defect numbers of the 

Dirich let problem for p roperly elliptic equation (1). The sum in this formula is finite, 

because det 0k c    for k  , and therefore, 2krank N   for 

sufficiently big k . A question can be asked here: What value may have the defect 

numbers 
1K  and 

2K ? Are they big or small? We can answer to this question for 

some cases of the fourth order equation (1).  

Let’s consider fourth order properly elliptic equation (1) when the roots of the 

characteristic equation (2) satisfy the condition: 

1 2 2, , 0; 0, 3,4.ji i j           

In this case, using the notations (18), the equation (1) may be represented in the 

form: 

 2 1 2 0, ,U x y D
z z z z z z z

  
         

       
         

, 

                                                                                                 (32) 

were 2 1, 1j    for 1,2j  . Let’s denote 
2 1 2 2,       . The 

following theorem was proved. 

Theorem. [Babayan 1999]. The Dirichlet problem (32), (4) is uniquely solvable if 

and only if one of the following conditions is satisfied: 

1) 2
0 , 

2) 2 1 2
0,  and 

               

2

1,
0

1 0, 3,4,
k

j

k
j

j k ,                              (33) 
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3) 
2 1 2
0,  and 

               

2

2,

0 0

0, 3,4,
jk

i j i

k

j i

k 




 

     .                                  (34) 

If the conditions (33) (or (34)) failed for some number 
0k , then the homogeneous 

problem (32), (4) has one solution – polynomial of order 
0 1k  , and for the 

solvability of the corresponding inhomogeneous problem it is necessary for the 

boundary functions to satisfy one solvability condition (fo r different 
0k  these 

conditions are linearly independent). Thus the defect numbers of the problem (32), 

(4) is the quantity of the 1,k  (or 2,k ) which are equal to zero. 

Later this result was refined. In [Babayan 2011] it was proved, that if r   

where r  is the real number (o r what is equivalent 
2 1r  ), then the condition 

(34) may fail only for one number 
0k , therefore, the defect numbers of the Dirich let 

problem (32), (4) may only have two values in this case: zero, when the problem is 

uniquely solvable ((34) holds), and one if (34) failed. The same result was proved 

for the case 
2 1 20,     in [Babayan 2012]. 

In [Babayan 2015] we consider the case when fourth order equation (1) has double 

roots. 

Supposing, that the roots of characteristic equation j  ( =1,2,3,4j ) satisfy the 

condition 

                   1 2 3 4= = , , =1,2,3,4,j i j                                      (35) 

we separately research the following three cases: 1) 
1 3> 0 >    – the equation 

(1) is properly elliptic, 2) 
1 3 > 0     – the equation (1) is improperly elliptic, 

and the last case 3) if one of the roots is real – the equation (11) is not elliptic.  

First, using the operators of complex differentiat ion we represent the equation (1) in 

the complex form. 

1). The case of properly elliptic equation.  Using operators of complex 

differentiation, we represent the equation (1) in the form: 

        

 
2 2

, = 0u x y
z z z z

 
      
    

      
.            (36) 

Here from (18) 1

1

=
i

i









, 3

3

=
i

i









, and, therefore, from the conditions 

1 3> 0 >    and (35) we have  

<1, <1, 0    . (37) 
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We represent the conditions (4) in equivalent form (29).  We suppose in this case 
   1,

f C


  , 
   g C


  , therefore, 
jF  belongs to the space 

   C


  for 

1,2j  . 

 

Theorem 1. 1 Let's denote =z  and  0.5 0.5= 0.5t z z . Then the Dirichlet 

problem (36), (4) is uniquely solvable if and only if 

 2 2

1 , = 3,4,kU t k k  ,  (38) 

where 
1kU 

 is the second kind Tchebychev polynomial of order 1k  . If the 

conditions (38) fail for any 
0k , then the homogeneous problem (38), (4) has a 

nontrivial solution, which is a polynomial of order 
0 1k  . In th is case one linearly 

independent condition on the functions jF  is necessary for the solvability of the 

inhomogeneous problem (36), (4). Therefore the defect numbers of the problem 

(36), (4) are equal to quantity of numbers for which the condition (38) failed.  

 
2). Improperly elliptic equation. In this case we have 

1 3 > 0    , therefore, an 

equation (1) may be represented in the form: 

 
2 2

1 2 , = 0u x y
z z z z

 
      
    

      
,                                    (39) 

where 1
1

1

=
i

i









, 3

2

3

=
i

i









. We get: 

 1 2 1 2, <1, <1    .                                                             (40) 

Let's define the functional class, which is necessary for further considerations 

 

Definition 2 We denote 
( , ) ( )mB    the class of functions analytic in 

 = : < <1R z z , which belong to the class 
( ) ( )C R

 (i.e. satisfy the Hölder 

condition in the closure of R ) with their derivatives of order not more than m . 

The following statement is proved. 

 

Theorem 2. 3 We suppose that 1 2   and denote 
1

2 1=z  
and 

 0.5 0.5= 0.5t z z . Let the boundary functions in (29) jF  for 1,2j   belong 

to the class 
   1,

1B


 . Then, i f the conditions (38) hold, then the problem (39), 

(4) is uniquely solvable. If the conditions (38) fail for any 0k , then the homogeneous  
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problem (39), (4) has a nontrivial solution, which is a polynomial of order 
0 1k  . 

In this case one linearly independent condition on the functions 
jF  is necessary for 

the solvability of the inhomogeneous problem (39), (4). Therefore, the defect 

numbers of the problem (39), (4) are equal to the quantity of numbers for which the 

condition (36) failed. 

 

3). Non-elliptic equation. 

 

Theorem 3. 4 Let the numbers 
1 , 

2 , z , t  be defined as in theorem 2. Then the 

homogeneous problem (39), (4) has no nontrivial solutions if and only if the 

conditions (36) hold. 

 

 

Example. Let’s consider an equation (36). Expanding brackets, we get:  

        
4 4 4 4 4

2 2 2 2

2 2 3 3 4 4
1 4 2 1 2 1 , = 0u x y

z z z z z z z z
        

    
       

       

 
 
 

, 

It is easy to verify, that the function    
2

, = 1U x y zz  is a solution of (36) if 

and only if 

 2 2 2 2 2

21 4 = 0 1 4 = 0 3 = 0z z U t         . 

On the boundary   this function vanishes. Thus, if the condition (38) fails for 

3k   then the fourth order polynomial U  is a nontrivial solution of the 

homogeneous problem (36), (4).  

Now, let’s draw the graph of the curves 
kL  defined by the equations 

1( , )kU x y k  . We draw it in the unit disc (  ,x y D ). 
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ContourPlot [{Abs[ChebyshevU[1, x + Sqrt[-1]*y]] == 2,  Abs[ChebyshevU[2, x + Sqrt[-

1]*y]] == 3, Abs[ChebyshevU[3, x + Sqrt[-1]*y]] == 4,  Abs[ChebyshevU[4, x + Sqrt[-

1]*y]] == 5,Abs[ChebyshevU[5, x + Sqrt[-1]*y]] == 6,  Abs[ChebyshevU[6, x + Sqrt[-

1]*y]] == 7, Abs[ChebyshevU[7, x + Sqrt[-1]*y]] == 8,  Abs[ChebyshevU[8, x + Sqrt[-

1]*y]] == 9, Abs[ChebyshevU[9, x + Sqrt[-1]*y]] == 10,  Abs[ChebyshevU[10, x + Sqrt[-
1]*y]] == 11,Abs[ChebyshevU[11, x + Sqrt[-1]*y]] == 12, Abs[ChebyshevU[12, x + Sqrt[-

1]*y]] == 13, Abs[ChebyshevU[14, x + Sqrt[-1]*y]] == 15, Abs[ChebyshevU[26, x + 

Sqrt[-1]*y]] == 27, Abs[ChebyshevU[200, x + Sqrt[-1]*y]] == 201, Abs[ChebyshevU[300, 

x + Sqrt[-1]*y]] == 301 }, {x, -1, 1}, {y, -1, 1}] 

Obtained in Wolfram Mathematica 9 

 

We see, that these curves may intersect only for 1t   , hence the condition (38) 

may fail only for one k . So, in this case the defect numbers of the problem (36), (4) 

may only be equal to zero  and one. Therefore, we can suppose that if the defect 

numbers of the problem (1), (4) for fourth order equation (1) in ellipt ic case are 

fin ite, they are not greater than one for an arbitrary location of the characteristic 

equation's roots, but this supposition must be proved. 
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Abstract :  From W ikipedia, the free encyclopedia  

"Curve fitting is the process of constructing a curve, or mathemat ical 

function, that has the best fit to a series of data points, possibly subject to 

constraints. Curve fitting can involve either interpolation, where an exact fit to the 

data is required, or s moothing, in which a "smooth" function is constructed that 

approximately fits the data.  Fitted curves can be used as an aid for data 

visualizat ion, to infer values of a function where no data are available, and to 

summarize the relationships among two or more variables."  

We analyze some interpolation and approximation methods and propose a general 

method of data fitt ing procedure. Two computer programs are presented. 

 

The oldest data fitting algorithm is described by the Lagrange interpolation formula. 

For the given data set   
0

, ,
n

k k k
M x y


  where no two 

kx  (the nodes or knots) 

are the same, it is necessary to find the polynomial of the least degree that at each 

kx  assumes the corresponding value .ky  This problem is always solvable and the 

solution is unique. Indeed, if the interpolating polynomial has the form 

  1

1 1 0 ,n n

n nP x a x a x a x a

      

then  
1

0 1 0 1 0 0 0

1

1 1 1 1 1 0 1

1

1 1 0

,

,

. . . . . . . .

.

n n

n n

n n

n n

n n

n n n n n n

a x a x a x a y

a x a x a x a y

a x a x a x a y













     


    


     

 

The principal matrix of th is system is the Vandermonde matrix V  with non-zero 

determinant, hence the solution (interpolating polynomial) exists and is unique. 

The matrix V is notoriously bad conditioned so usually another way is chosen. One 

starts by the product 

      

   
0

n

k

k

x x x


   

and introduce the Lagrange fundamental polynomials  

 
 

   
k

k k

x
l x

x x x







,                                                     (1) 
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satisfying the biorthogonality condition   , , 0,1, , .k m kml x k m n   

Finally 

     

   
0

. 
n

k k

k

P x y l x


  

The uniqueness of interpolation problem’s solution implies that  

 
0

, 0,1, , 1,
n

m m

k k

k

x x l x m n


   

Conceived to serve as a tool in the investigation of functions, interpolation 

polynomials suffer two serious flaws. The first is the polynomial wiggle, i.e. 

increasing the degree of  

 

Fig.1. Lagrange fundamental polynomials 

 

the polynomial makes the oscillations very large (Runge phenomenon, [5]). The 

second is the impossibility to handle arbitrary plane curves (potentially multi -valued 

functions). 

.  

Fig.2. Function   2

1

1
f t

t



 and the interpolating polynomial 
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For the same knots another interpolation formula may be obtained,   introducing 

Hermite-Fejer basic polynomials  

 
 

 
   21 .

k

k k k

k

x
h x x x l x

x





 
     

 One has  
0

1
n

k

k

h x


 . 

Example. For the interval  1;1  and two nodes  1;1 the Hermite-Fejer basic 

polynomials are    
3 3

1 2

3 2 2 3
,

4 4

x x x x
h x h x

   
   (see Fig. 3) and the 

interpolating polynomial for x  is 

33
.

2

x x
 

 

Fig. 3. Hermite-Fejer basic polynomials 

 

According to Fejer's theorem [3]}, ch.4, § 7) the Hermite-Fejer  interpolating 

polynomials, constructed by the nodes, consisting of zeros of the Chebyshev 

polynomials of the first kind tend to any continuous on  1;1  function .f  

The polynomial wiggle shortcoming is remedied by the introduction of the 

interpolation by splines.  

To this end usually are used cubic polynomials, different for each pair o f 

neighboring nodes, regularized such that at each node the resulting function S  and 

its derivatives up to the order two are continuous. Each cubic polynomial is 

determined by 4  constants, the number of intervals is n , so the problem totally 

concerns 4n  parameters. At each inner node 4  conditions are imposed and 2  

additional conditions are imposed at the first and the last nodes, so  we get 4 2n  

conditions. Two constants remain free and may be chosen arbitrary, depending on 

the nature of the spline ("natural-    0 0nS x S x   ", "clamped- 
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       0 0 , n nS x f x S x f x     ", "not-a-knot"-

       1 1 1 10 0 , 0 0n nS x S x S x S x 
          splines). All these 

conditions lead to a diagonally dominated tridiagonal system of linear equations, 

which is uniquely solvable. In practice the spline is found as the solution of that 

system. We need more complicated and indirect construction. Further we will 

consider only natural splines. 

 

Fig. 4. Basis splines 

 

First we find so called  basis splines  ks  that  are the solutions of the problem

 k m kms x   and afterwards the spline is reconstructed by the equality  

   
0

. 
n

k k

k

S x y xs


  

 Ev idently   
1

, 0, . 1
n

m m

k k

k

x s x x m


 
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Fig.5. Interpolation by a spline of   2

1

1
f t

t



. 

 

The smoothing idea is implemented in the Bernstein polynomials. The general case 

of arbitrary interval  ;a b  is reduced to  0;1  and set of weights (Bernstein basis 

polynomials)      1 , 0;1
n kk k

k nb t C t t t


    are introduced. Note that the 

maximum of 
kb  is attained at the point ,

k

n
 which will serve as equidistant knots. 

For any continuous on  0;1  function f  the sequence of Bernstein polynomials  

   
0

,
n

n k

k

k
B f t f b t

n

 
  

 
 

converges uniformly on   0;1   to f . Note that  

 0 1, 1,2, , 1.

k n k

k

k n

k n k
b t C k n

n n


   

       
   

  

One has  ([2], 6.2.4-6.2.6) 

 
0

1,
n

k

k

b t


                                                            (2) 

 
0

1
,

n

k

k

kb t t
n 

                                                      (3) 

                     2 2

2
0

1 1
.

n

k

k

t n
k b t t

n n n


                                     (4) 
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Fig. 6. Bernstein basis polynomials. 

 

Bohman-Korovkin Theorem [3]. Let  1nL n    be a sequence of positive linear 

operators acting in the space of continuous functions   ,C a b . If 

0nL f f


   for   21, and ,f x x x  then 0nL f f


    for all 

  , .f C a b  

Formula (4) shows that the approximat ion by the Bernstein polynomials  can not be 

faster than 1/ .n  Real situation is even worse. In fact, one can show that in order to 

have a maximum error s maller than 0.01  one needs at least a degree of  
71.6·10 .  

Let  ;a b  be any segment of the real axis and   
0

n

k k
e t


 be a set of continuous 

linearly independent functions defined on  ;a b . 

Definition 1. The set   
0

n

k k
e t


   forms a partit ion of unity if   

0

1.
n

k

k

e t


  

Remark. Usually in the defin ition of the partit ion of unity   
0

n

k k
e t


 the following 

condition    0 1, 0;1ke t t     is imposed. 

Actual definition does not exclude the possibility that some functions may admit 

negative values also, as well values, greater than 1  may occur. 

Considered above Lagrange fundamental polynomials, Hermit -Fejer basis 

polynomials, basis splines and  the Bezier basis polynomials form a partition of 

unity. 
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Definition 2. Let    
0

;
n

k k
t a b


  be a set of pairwise different points and 

  
0

n

k k
e t


- set of functions, defined on  ;a b . We say that they are biorthogonal 

if  

  , , 0,1, , .k m kme t k m n                          (5) 

 

All mentioned above partitions of unity, except the Bezier basis polynomials are 

biorthogonal with corresponding set of knots. 

Note that the biorthogonality condition (5) forces the fitting curve to pass 

by the interpolation nodes, i.e. in this case one gets the interpolation polynomial.  

Definition 3. We say that the set   
0

n

k k
e t


 reproduces the function f  if  

     
0

n

k k

k

f t f t e t


 . 

The Lagrange interpolat ion formula reproduces monomials  
1

0

n
kt



. Formulas (2)-

(4) mean that the approximat ion by the Bernstein polynomials as well (natural) 

splines    reproduce the functions 1  , t  and do not reproduce 
2t . The Hermite-Fejer 

basic polynomials  reproduce the constants. 

In order to keep data fitting curve in the "narrowest" possible vicinity of data set 

,M it is natural to seek a part ition (if this is possible) such that the corresponding 

Lagrange fundamental polynomials have "smallest" collective deviation from Ox

axis. More precisely, consider the set of points  kx and corresponding Lagrange 

fundamental polynomials   
1
.

n

k k
l t


 Denote by    : ; ;K C a b C a b  the 

projection operator putting in correspondence to any function f  the polynomial  

      
1

.
n

k k

k

Kf x f x l x


  Denote the Lebesgue constants (the norm of the 

operator K ) by   

 
 

; 1

sup .
n

n k
x a b k

l x
 

   

 

Let 
n

  be the set of all polynomials with the degree not exceed ing n  and   

  inf
n

n
p

e f f p


  . 

It is known that     1 .n nf Kf e f    
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For any choice of points  kx  one has  
ln

.
22

n

n
   

The "almost" optimal value of 
n  is attained (for the segment  1;1 ) when the 

nodes  coincide with the "expanded Chebyshev nodes" (roots of the Chebyshev 

polynomials of the first kind, scaled such that 
1 1x    and 1nx  ) . The norm of 

this operator is equal [1] to  
2 1

ln 1 ,0 .
4

n n nn  


       

More versatile tool, permitting handling multi-valued functions and treating 

arbitrary knots is supplied [4] by the Bezier construction. The Bezier curves are 

defined by parametric equation as the convex linear combination of the points M  

 
 

 
 

0

,
n

k

k

k k

x t x
B t b t

y t y

   
    

  
 

hence the Bezier curve lies in the convex hull of M . As only 
0w  at 0t   and 

nw  

at 1t   are equal to 1  the Bezier curve, in contrast with the Lagrange polynomial, 

passes  by the first and the last nodes  0 0;x y  and  ; .n nx y  

We propose the following general formula. The fitting curve is defined by  

parametric equation 

 

   

   

0

0

,

.

n

k k

k

n

k k

k

x t x e t

y t y e t










 






                                                        (6) 

Note that if the set   
0

n

k k
e t


  reproduces the linear function then formula (6) 

includes as particular case interpolation formulas.  The Bezier curves correspond to 

the choice of Bernstein basis polynomials as the set   
0

n

k k
e t


. 

Example. Let  
 

 
2 1

1, 1, cos , 1, , .
2

k

k
a b t k n

n

 
       

The Lagrange fundamental polynomials defined by  formula (1) are  

   
 

 
1 sin ,

k n

k k

k

T t
l t t

n t t
 


 where T  is the Chebyshev polynomials of the 

first kind. 

Below the MatLab code of corresponding plot is appended. 
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Fig.7. Function   2

1

1
f t

t



 and the interpolating polynomial 

 

function ABInter(a,b) 

n=length(a); 

p=linspace(pi/2/n,pi-pi/2/n,n);  

m=max(-cos(p)); 

r=-cos(p)/m;  

syms t 

for k=1:n  

    f=prod(t-r(1:k-1))*prod(t-r(k+1:n));  

    g=prod(r(k)-r(1:k-1))*prod(r(k)-r(k+1:n));  

    l(k)=f/g; 

end 

L=dot(a,l); 

M=dot(b,l);  

s=linspace(-1,1);  

x=subs(L,t,s); 

IntPolCh=subs(M,t,s); 

plot(x,IntPolCh,'-.r','Linewidth',1.5) 

 

The next p lot shows the difference between the Bezier curve and the fitting curve 

constructed by the formula (6). Input data is generated by mouse clicks.  

 

function Lintsym(n) 

set(axes,'Xlim',[0,1],'YLim',[0,1]) 

g_fig=gcf; 

set(g_fig,'Position',[10 10,700 680]); 

hold on 
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h=text (.35,1.05,'Choose 1-st control point','Fontsize',14);  

a=zeros(1,n);b=zeros(1,n); 

for k=1:n  

[a(k) b(k)]=g input(1);  

plot(a(k),b(k),'Color','k','Marker','*') 

delete(h) 

   if k==1 

       h=text(.35,1.05,'Choose 2-nd control point','Fontsize ',14); 

   elseif       k==2 

       h=text(.35,1.05,'Choose 3-rd control point','Fontsize',14);  

   elseif k<n        

       h=text(.35,1.05,['Choose ',num2str(k+1),'-th control point'],'Fontsize',14);  

   else 

       h=text(.2,1.05,'Interpolation curve and the control polygon','Fontsize',14); 

   end 

end 

plot(a,b,'k') 

hold on 

syms t 

n=length(a); 

p=linspace(pi/2/n,pi-pi/2/n,n);  

m=max(-cos(p)); 

r=-cos(p)/m;  

syms t 

for k=1:n  

    f=prod(t-r(1:k-1))*prod(t-r(k+1:n));  

    g=prod(r(k)-r(1:k-1))*prod(r(k)-r(k+1:n));  

    l(k)=f/g; 

end 

L=dot(a,l); 

M=dot(b,l);  

s=linspace(-1,1);  

x=subs(L,t,s); 

FitC=subs(M,t,s); 

plot(x,FitC,'-.r','Linewidth',1.5) 

 for k=1:n 

    c(k)=nchoosek(n-1,k-1)*t^(k-1)*(1-t)^(n-k);  

end 

u=c*a'; 

v=c*b'; 

x=subs(u,t,linspace(0,1));  

Bez=subs(v,t,linspace(0,1));  

plot(x,Bez,'g--','LineWidth',2) 

axis 'equal' 

hold on 
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plot(a,b)  

legend('FitC','Bez') 

 

 
Fig.8. Interpolation curve, Bezier curve and the control polygon 
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Abstract : While teaching “Solutions of Quadratics” I was emphasising the idea 

that, in general, the solutions of equations such as   ax
2
 + bx + c = 0 are obviously 

the points where the graph of  y = ax
2
 + bx + c crosses the x axis. I started to be 

troubled by the special cases of parabolae that do not even cross the x axis. We say 

that these equations have “complex solutions”   but physically, where are these 

solutions?  With a litt le bit of lateral thinking, I realised that we can physically find 

the actual positions of the complex solutions of any polynomial equation  and indeed 

many other common functions!  The theory also shows clearly and pictorially, why 

the complex solutions of equations with real coefficients occur in conjugate pairs. 

 

 

 

INTRODUCTION  

                                                                   

    

This is the basic graph of y = x
2
 and if we 

only use real values of x we on ly obtain 

positive values of y.  Fig 1 

 x = ± 1    we get y = 1  

 x = ± 2    we get y = 4                 

 x = ± 3    we get y = 9                

 

 

 

However, if we allow values of x such as:     

 x = ± i    we get y = – 1  

 x = ± 2i  we get y = – 4                 

 x = ± 3i  we get y = – 9            

 

                                                   Fig 1 
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The insight, is to allow a complex  x  PLANE 

but with just a real y AXIS.   

 

This produces a sort of “phantom” parabola  

underneath the basic parabola and at right 

angles to it.  

 

I have discovered that nearly ALL curves have 

these extra “phantom” parts and more  

importantly, this has an intriguing connection 

with the Fundamental Theorem of Algebra. 

 

 
Real x axis 

Imaginary x axis  

 

                                                          Fig 2  

 

“PHANTOM GRAPHS”. 

Basically, the Fundamental Theorem of Algebra states that polynomial equations of 

the form:  ax
n
 + bx

n – 1 
 + cx

n – 2 
 + …  px

2
 + qx

 
+ r = 0   will have n solutions. 

(where n is a positive integer) 

 

This is often interpreted as:  

“The solutions of an equation f(x) = 0 are where the graph of y = f(x) crosses the x 

axis” 

but this only finds the solutions which are REAL numbers. 

                                                                               

Consider the equation x
2
 – 4x + 3 = 0 

The graph of y = x
2
 – 4x + 3 is as shown in Fig 3    

              

The graph crosses the x axis at x = 1 and  

x = 3 so the solutions are x = 1 and 3 

 

In this case, the phantom hanging below 

had no part to play in this logic. 

 

 

 

 

                                                               

 

 

                                                                     Fig 3                                                   
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However, consider the equation x
2
 – 4x + 4 = 0 

 

The graph of y = x
2
 – 4x + 4 is as shown in Fig 4. 

 

In this case, the top half of the parabola crosses 

the x axis at x = 2 AND the bottom half of the  

parabola (the phantom) also crosses the x axis 

at x = 2. (a double solution) 

 
The graph goes through the point (2, 0) twice. 

 

 

 

                                                                                     Fig 4 

 

Of course, the most interesting case is when the basic top half of the parabola would 

not  normally cross the x AXIS at all but its phantom would cross the complex x 

PLANE! 

Consider the equation x
2
 – 4x + 5 = 0 

The graph of y = x
2
 – 4x + 5 is as shown in Fig 5. 

  

 
Fig 5 

 

The phantom crosses the x plane at x = 2 + i  and x = 2 – i  as shown in Fig 5 and 

these are the complex solutions of the equation. 

 

We can now re-state the Fundamental Theorem of Algebra as: 

 “The solutions of an equation f(x) = 0, whether they are real or complex, are where 

the graph of y = f(x) crosses the COMPLEX x PLANE”. 

                                                               

 Clearly, we can see that any parabola of the form: y = ax
2
 + bx + c (with  its 

phantom) will cross any horizontal p lane (which represents any real y value) exactly 

two times. Fig 6. 
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Fig .6 

                                                                 

In my website www.phantomgraphs.weebly.com you will find detailed working to 

show HOW  CUBIC functions of the form: y = ax
3
 + bx

2 
+ cx + d each have 2 

phantoms emanating from their maximum and min imum points. See Fig 7.  

 

 
Fig.7 

 

 

We know that any Cubic equation of the form: ax
3
 + bx

2 
+ cx + d = 0 will have 3 

solutions.Sometimes we have 3 REAL solutions as for the intersections with the 

middle Plane B in Fig 7  and sometimes we have 1 real solution and 2  complex 

solutions as on Planes A and C.  Fig 7. 

 

This is a typical QUARTIC graph. Fig 8 showing 1 maximum and 2 minimum  

points. 
 
 

 
 

http://www.phantomgraphs.weebly.com/
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                                                             . 

 
Fig 8 

 

This is the same Quart ic graph with its 3 phantoms emanating from each turning 

point. Fig 9. 

 

 

 
Fig.9 

 

The intersection points with the 4 p lanes A, B, C  and D with the graph, are marked.  

Plane A shows 2 real solutions on the basic RED curve and 2 imaginary solutions on 

the PURPLE phantom. 

 

Plane B shows 4 real solutions on the basic RED curve. 

 

Plane C shows 2 double real solutions which lie on the basic red curve and the  

GREEN phantoms. 

 

 Plane D shows 4 imaginary solutions on the two GREEN phantoms. (2 sets of 

conjugate roots) 

 



CJCME  ..................... 2016 , No.1  

36 
 

 

Clearly a QUARTIC curve will pass through ANY horizontal p lane 4 times.  

 

 

In my website www.phantomgraphs.weebly.com I have found that all sorts of 
graphs, not just polynomials, have some amazing and surprising PHANTOMS. 

Examples are y =   
2

2

1

x

x 
     , y = cos(x), y = e

x
,  y

2
 = x(x – 3)

2 
 and many more. 

 

 

                    

 

One particularly lovely surprise was  the hyperbola  y
2
 = x

2
 + 25                      

 

 
Fig 10 

 

There are clearly NO real y values in the interval    – 5 ≤ y ≤ 5  .So I decided to 

calculate complex x values  for y values such as y = 3 substituting in    x
2
 + 25 =  y

2
 

we obtain            x
2
 + 25 = 9   

                            x
2
         =  – 16  

                            so     x  = ± 4i  

Similarly, if y = 4, x = ± 3i 

and  if  y = 0, x = ± 5i  

 

These of course are points on a CIRCLE of  rad ius 5 units and this phantom circle 

joins  the two halves of the hyperbola! See Fig 11.  

 

 

 

 

 

 

http://www.phantomgraphs.weebly.com/
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                                                              Fig 11  

 

When I first worked on phantom graphs I used to calculate the complex points as 

above and then  I made Perspex models to demonstrate the graphs clearly in 3 

dimensions. In order to draw the graphs in Autograph I had to work out the actual 

equations of the phantoms. 

 

I will demonstrate the method for the hyperbola shown above. 

 

Firstly we have to allow complex x values so that 

when x values appear in the equation we need to replace them with (x + iz)  

 

The above equation becomes y
2
 = (x + iz)

2
 + 25   Equation 1 

 

Expanding and rearranging:   y
2
 = (x

2
 – z

2
 + 25)  +  (2xz)i   

 

The important idea now is that phantom graphs can have complex x values BUT the  

y values must only be REAL numbers. 

 

This means the imaginary part of y must be zero.  

That is  2xz = 0 so x = 0 or z = 0 
If z = 0 then Equation 1 simply becomes  y

2
 = x

2
 + 25 which is the original 

hyperbola. 
If x = 0 then Equation 1 becomes  y

2
 = (iz)

2
 + 25 that is y

2
 =  – z

2
 + 25 or in its 

more familiar form y
2
 + z

2
 = 25 which is the phantom circle joining the two halves 

of the hyperbola!  

 

By far the most challenging complex algebra     Fig 12   

was needed in finding the equations of the  
phantoms for the function  y =   x

4     
.    see Fig 12 

                                                x
2
 – 1  
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Fig 12 

 
We can see that there are no real values of y in the interval  0 ≤ y ≤ 4  

 
Interestingly, if we consider a general y value such as y = c  we get      x

4     
.  = c  

                                                                                                                x
2
 – 1    

which produces a typical quadratic equation  x
4
 – cx

2
 + c = 0 which of course has 4 

solutions. 

 

If we draw y = 5 on Fig 12 it crosses 4 times but   if we draw y =  – 2 it only crosses 

twice.   

  

But when we consider the graph with its  Phantoms, we see that any horizontal 
plane  y = c crosses the graph 4 times which further verifies the truth of the 

Fundamental Theorem of Algebra.  

 

  
Incidentally, the equation of the bottom purple  phantom is:   y  = 1 – z

2
 –    1  .   

                                                                                                                      z
2
 + 1   

and the equation of the top blue phantom is: y = x
2
 – z

2
 + 1  +            (x

2
 – z

2
 – 1 )        

                                                                                                   (x
2
 – z

2
 – 1)

2
  + 4x

2
z

2
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Fig 13 

 

 
The Intriguing Function  y = x

x
 

                                                                      

When we plot this graph using Autograph 

we obtain the red graph in Fig 14. 

 

 
Fig 14 
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If x =  –  1 we can work out y = (– 1)

 – 1 
 = – 1 so we can also plot the point (– 1, – 1)  

 

Similarly if x = –2 then y = (–2)
 – 2 

 = + 0.25 and if x = –3 then  y = (–3)
 – 3 

 = – 0.037 

 

These isolated points seemed strange so I decided to find more points using a 

graphics calculator and I realised that complex numbers appear!  
For example:  If x = – 0.3, y = (– 0.3)

 – 0.3
 = 0.84 – 1.16i 

                       If  x = – 0.9, y = (– 0.9)
 – 0.9

 =  – 1.05 – 0.34i  

                       If  x = – 1.5, y = (– 1.5)
 – 1.5

 = 0 + 0.54i 

This graph is different from the types  of phantom graphs previously considered 
because they have only REAL y values   but complex x values  are allowed. 

That is, a real y axis but a complex x plane. In this case, we have only REAL x 

values  but complex  y values  are produced. That is, a real x axis but a complex y 

plane. I calcu lated a lot such points and the very surprising result was this  delightful 

SPIRAL! Fig 15 

 
Fig 15 

 
The curve spirals around the x axis. 

 

I will finish off with views of the SPIRAL from two different angles. 
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CONCLUS ION :  It is an interesting concept that graphs, even as simple as  y = x
2
, 

which were prev iously assumed to exist only in the “x, y plane” can be shown to 

have a 3 dimensional aspect if we include only those complex x values which still 

produce REAL y values.This concept makes The Fundamental Theorem of Algebra 

far more meaningfu l in the form: “The solutions of an equation f(x) = 0, whether 

they are real or complex, are where the graph of y = f(x) crosses the COMPLEX x 

PLANE”. 

 

Note: A ll the graphs have REAL  y   values and we only use the complex  x   values 

which produce real y values. If any complex y values were considered as well as 

complex x  values, the graphs would need 4 dimensions.   
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Abstract :  The  one –to-one correspondence of the geometrical inversion, inverts 

the Euclidean plane to Ideal p lane  which contains all the points of the first except 

one (the center of inversion) plus one point at infinity. The inverse of Euclidean 

straight lines in Ideal plane, is a system of circles passing from the center o f 

inversion, which complete the axioms of Euclid. So these circles are the Ideal 

straight lines of the Ideal plane. Now the inversion becomes an isomorphism  and 

the geometry of the two spaces are identical except for superficial d ifferences in 

terminology and notation. 

 

            

 

Contents  

1. The isomorphism 

2.  Inversion : the transformation of the plane to itself    

3.  The axioms of Euclid’s straight line    

4. The inversion as an isomorphism    

5.  Ideal geometry is imaginary but mathemat ically consistent   

6. Comment  

 

 1. The isomorphism 

In  mathematics,  we study the properties of postulate sets (independence, 

completeness, categoricalness, complete independence etc).  That was first brought 

into prominence  by Hilbert ’s  “Grundlagen der Geometry”. There, we meet the 

concept of isomorphism in it’s general expression: 

A postulate set P is said to be categorical if any two interpretations of P are 

isomorphic. 

Two interpretations  I and I’ of a postulate set P are isomorphic  if one can set up a 

one-to-one correspondence between the elements of I  and those of I’ in such a way 

as “to be preserved by the relations and the operation of P. It fo llows that if two  

 

 

 

 

https://www.zbmath.org/classification/?q=cc:05C60
https://www.zbmath.org/classification/?q=cc:40E99


CJCME  ..................... 2016 , No.1  

43 
 

 

interpretations I and I’ of a postulate set are isomorphic , then any true (false) 

proposition p in interpretation I becomes a true (false) proposition p’  in  

interpretation I’  when we rep lace the  elements e, the relations r  and the operations  

 

o on the elements  in p,  by their corresponding  e΄  ,r΄,    and o΄. (H. Eves)  Two 

isomorphic interpretations of a postulate set P are , except for superficial differences 

in terminology  and notation, identical; two isomorphic groups G and G’  (they are 

the interpretations  I and I’ of the postulate set of groups) cannot be distinguished  

from the view of the theory of groups. An isomorphism can be looked as a renaming  

of the elements of G in elements of G’ . 

Anecdote: a mathemat ician was asked if he believes in God. Answer: Yes, via an 

isomorphis m 

Removing our interest  in the area of geometry, then all the above are translated in 

what  is known from the theory of surfaces: two surfaces E1 and E2 are called 

isomorphic if it is possible to define a one-to-one correspondence of all the points  

of E1,   on the points of  E2 so that each "straight line" of E1 corresponds in a 

"straight line " on  E2. Then the geometries of the two surfaces are identical: each 

proposition in one (geometry E1) applies to another (the geometry of E2). In this 

result, there are the bases of the Euclidean models of the non-Euclidean geometries, 

that the Ideal geometry of this art icle, is the first trial.  

In the sequel, we shall set up a one-to-one correspondence between the points of the 

Euclidean plane into itself, proving that this correspondence is an isomorphism.  

 

2. Inversion : the transformation of the plane to itself   .  

Let Π a fixed circle of center O and rad ius  r  , and let P be any point in the plane of 

Π. Then the point P’ on the ray OP such that  OP.OP’=r
2
 is called the inverse of P 

with respect to circle Π. We add to the plane a single ideal point at infinity. If P≡0, 

then P’ is taken as this ideal point. Circle Πis called the circle of inversion , point O 

the centre of inversion , and r
2
  the power of inversion. There is set up a one-to-one 

correspondence between the points of the plane of Π; to every point there is a 

corresponding point , the points of the curve C   will invert into the points of a curve 

C’ , called the inverse of C. We can prove the following theorems  concerning this  

transformation of inversion 

Th.1. if P’ is the inverse of P , then P is the inverse of P’  

Th. 2. A point inside the circle of inversion inverts into a point outside the circle o f 

inversion; a point outside the circle of inversion inverts into a point inside of the 

circle of inversion; a point on the circle of inversion inverts into itself 

Th.3.the necessary and sufficient condition that 

two shapes are inverse, is that  any two pairs of 

corresponding  points not  collinear, are  

concyclic.  

 Consider the points A, B and the inverse A΄ ,  
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B’  fo r inversion (O, r
2
)

1
. (Fig. 1) is then OA.OA = OB.OB = r

2
 so the four points as 

long as they are not collinear, are  con-cyclic . Conversely, it is easily demonstrated 

that two shapes, between which there is a correspondence such that any two pairs of 

corresponding  points to be con-cyclic, then the shapes are homologous to an 

inversion.  

 

Th.4. a straight line through the center of inversion inverts into itself 

Th.5 a circle orthogonal to the circle of inversion inverts into itself  

Th.6. A straight line that does not pass through the center of inversion, invert s into a 

circle that does not pass through the center of inversion.  

Th. 7. the inverse of a circle that does not pass through the center of inversion, is a 

circle that does not pass through the circle of inversion, and homothetic to this. 

Th.8. any circle through a pair of inverse points  P and P’  cuts the circle of 

inversion orthogonally.  

Th.9. The inverse of a circle that pass from the center of inversion O, is a 

straight line parallel to the tangent of the circle  at O. (fig.5)  

 

 Th. 10.  Two intersecting circles C΄ and C΄΄  orthogonal to the same circle C, are    

intersecting at points P and P’  which are inverse relative to the circle C. (Fig. 2)  

 

Th.11. a given circle may be inverted into 

itself by the use of any given exterior point 

as center of inversion. 

Th.12. in an inversion, the angle between 

two intersecting curves is equal to the 

corresponding angle between the two 

inverse curves. A transformat ion that 

preserves angles between curves  is called 

conformal transformation. So, inversion is 

a conformal t ransformat ion. 

Th.13. the distance of the inverse points .  

Without harming the generality, we consider the radius of inversion r = 1 

In Fig. 3      

is OA.OA΄ = OΒ.OΒ΄ = 1. The triangles OAB, OA΄B΄ are similar.  

therefore  

A΄B΄ / AB = OA΄ / OB   

 

 

 

 

 

                                                                 
1
 The circle (O,r) is not in the figure.  
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Α΄Β΄=ΑΒ.ΟΑ΄/ΟΒ=ΑΒ.ΟΑ΄ΟΑ/ΟΒ.ΟΑ=ΑΒ/ΟΑ.ΟΒ 

 finally                   

Α΄Β΄=ΑΒ/ΟΑ.ΟΒ   ………..(1) 

 

If points A, B, A’, B’ are collinear the same formula applies to the distance of A’, B’  

More details and additional properties for the inversion we can find in the γεωμεηρία  

Κανέλλοσ and   in the geometry of the Jesuits. 

 

                    The system of circles passing through a fixed Point.. 

We shall examine now the representation of ordinary plane geometry by the 

geometry of a system of  circles through a fixed point O, with the results  of the 

above transformation of the plane on itself (the inversion with center O and radius 

1). It is convenient to speak for the plane of the straight lines and the plane of circles 

, as two  separate planes (the second as Ideal plane). We have seen that to every 

straight line in the plane of the straight lines , there corresponds a circle in the plane 
of circles. We shall call these circles Ideal straight lines. The Ideal points will be 

the same as ordinary points , except that the point O will be excluded  from the 

domain of the Ideal points, plus a point at infinity. As angle of ideal lines, we define 

the angle of the archetype straight lines through the inversion, as inversion preserves 

angles between two inverse curves. 

If we prove that the correspondence of inversion is an isomorphism of the 

Euclidean plane  to the Ideal plane, then the geometries of the two p lanes wil l be 

identical. The properties of the set of circles could be established from the 

knowledge of the geometry of the straight lines, and every proposition concerning 

points and straight lines in the one geometry could at once be interpreted as a 

proposition concerning points and circles in the other.  

 

3. The axioms of Euclid’s straight line   . 

The axioms of Euclid are:  

1. There is exactly one straight line through two distinct points.  

2. Every straight line can be extended indefinitely and is open from both ends, has 

infinite length. For any two points A, B there is always another C to B is "between"  

 

A and C. The meaning of " between-ness" , is basic for Euclidean geometry.  

3. You can draw a  circle with any center and radius. This axiom seems to be 

unrelated to the points and straight lines. But beware if the Euclidean definit ion of 

the circle "which is the line where all points equidistant from one another," we will 

see that this axiom ensures something for d istance. How do we know that the 

distance of the ends of diabetes remains the same when rotated; It ensures that the 

"distance" in the plane (space), as if set, should ensure the unchanged length for a 

segment that is moved from one place to another.  

4. All right angles are equal. Again we need to know the proper Euclidean definit ion 

to interpret the axiom: "When two intersecting lines form the successive angles 

equal then each of them is a right angle. So the fourth axiom is equivalent to the case 

that the straight lines have not zig-zag, "break", angular points. Let us remember the  
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greatest circle of the sphere .  

5. The most famous axiom in the history of science: from a point outside a straight 

one parallel is conducted to this. Parallel lines are in  the same level that as if 

extrapolated do not intersect.  

The question that comes here is: is Euclidean straight of our daily experience, the 

only line that satisfies the above axioms? though the world around us infuses us with 

a strong intuition about what is straight line, can the axiomatic construction of 

Euclid  be applied to another line after appropriate axiomatic assumptions about 

space? If so, we will begin to falter in the absolute of Euclidean space. This thought, 

ie the search of another line that  the axioms of Euclid are valid, and the 

investigations of the consequences of this  geometric phenomenon leads us to study 

the isomorphism mentioned above. This isomorphis m  is a first example of 

understanding the relativity of geometry and is reported in the book of Bonola, “Non 

Euclidean Geometry”.  

 

4.  The inversion as an isomorphism   . 

The first axiom  

Any two different Ideal points A,B 

determine the Ideal line A, B (fig.4), just as in 

Euclidean geometry, as three points  (O,A,B) define a 

unique circle. So the first axiom of Euclid  is valid in 

Ideal plane. 

    

 

 

 

Definition of ideal distance  

We define as ideal distance of the ideal points A’, B’ (fig.5,  theorem 9) the 

distance AB of the archetypes  points of A’, B’ on the Euclidean line-archetype 

through the  inversion. 

But as from theorem 13 we have 

  ΑΒ=Α’Β’/ΟΑ ’.ΟΒ’   ………..(1) so 

 «distance Α΄Β΄»= Α΄Β΄/ΟΑ΄.ΟΒ΄. ….(2) 

 

We must note here that the  length Α΄Β΄/ΟΑ΄.ΟΒ΄. is not the Euclidean length of 
A’ B’ , but we agree to call it length, it is the ideal length, the “length”. 
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So the  equal  lengths in Euclidean plane remain equal in ideal plane!  

 

The first condition of the distance is that  

“distance”ΑΒ=”distance”ΑG +”distance”GΒ  when G is between A and B that is 

easy to show. 

The idea of “between-ness” is established from the  fact that O is excepted from 

the ideal points of the ideal p lane. If in figure 4 we had not except the point O 

then the points Γ1 and  Γ2 should be between A and B. So we insure the axioms 

of order that are related with the second axiom of Euclid.  

 

The 2
o
 and the 4

o
 axioms of Euclid in Ideal plane   . 

The definit ion of the ideal distance  has in figure 6 this paradox: if we take on the 

ideal line the segment KA as unity of distances, then this unity becomes gradually 

smaller and smaller as we proceed along the line towards pole O, but the 

“distances” will  remain “equals”. So in figure 6  we should require infinite number 

of unities to reach at O, so we have the second axiom of Euclid: the “ideal length 

of the ideal line” is infin ite, and there is not a last point on it, it is an open line.  

For the fourth axiom we say: as in inversion the angles are preserved (conformal), 

the axiom for the right angles in Euclidean plane will also hold for the “right 

angles” in the Ideal plane” so the fourth Euclid’s axiom may appear in the geometry 

of the Ideal Po ints and Lines. 

 

   For the 5
o
 axiom. 

 

 
 

 

Ideal parallel lines  

 

If we have an Ideal line BΓ and an Ideal point A not on the line, we define the 

“parallel Ideal line” to ΒΓ, the circle which touches at O the circle coincid ing with 

the given line, and also passes through the given point A. So the two Ideal lines 

touch each other at O , which is not an Ideal point, will be Ideal parallel lines  and  
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the second  (the circle is unique) will passes through A. So the fifth axiom of 

Euclid holds on the Ideal straight lines.  

 

For the 3
o
 axiom 

  
Theorem 14  the Ideal length of an Ideal segment is unaltered  by inversion to 

any circle of the system. 

Let OD be any circle of the system and let C its centre. Then inversion changes 

an Ideal line into an Ideal line. Let the Ideal segment AB inverts into the Ideal 

segment A’B’.  We can prove (fo rmula 1) that AB and A’B’ have the same Ideal 

length. (Bonola p.245)  

 

Ideal dis placements . 

In the 3
o
 axiom in Euclid’s plane, we have that the length of an linear segment 

must be unaltered as the segment will be displaced from one place of the plane  to 

the other. So firstly we must make clean the concept of plane displacement. 

We know that every plane displacement is a translation or a revolution or both. 

(γεωμεηρία Καννέλοσ)  But every translation or revolution can  be resolved in 

infinite ways in two axial reflect ions, so the plane displacement will be studied  

from the concept of axial reflections. What is the Ideal reflection in an Ideal line?  

Theorem 15 : the inversion about any circle of the system in Ideal plane  is 

equivalent  to reflection of the Ideal points and lines  in the Ideal line which 

coincides with the circle of inversion, and is orthogonal to the reflected Ideal 

line. 
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In figure 9, C is the centre of a circle 

(γ) of the system and A , A’ inverse 

points with regard to this circle. Then 

the circle OAA’ is orthogonal to the 

circle (γ) of inversion (theorem 8). 

This is the axis of the reflect ion we 

are going to prove. In other words A 

and A’ are on the Ideal line 

perpendicular to the circle of 

inversion (ω=90). A lso the Ideal line 

AA’ is bisected by that circle in M , 

since the Ideal segment AM, inverts 

into the segment A’M , and Ideal lengths are unaltered by such inversion.(th.14)  

Such an inversion is, therefore the same as reflexion,  and translation will occur 

when the circle of inversion (γ) is orthogonal to the given Ideal line.  

The Ideal displacements are the results of Ideal Reflections. 

So finally we have proved that any Ideal displacement of an Ideal line  segment, 

does not alter it’s Ideal length, so in Ideal geometry holds the third axiom of 

Euclid. 

 

5. Ideal geometry is imaginary but mathematically consistent  . 

Finally we set up a one-to-one correspondence between the points of the 

Euclidean plane into itself, the inversion, having a new space of two dimensions, 

the Ideal plane. There the images of the Euclidean straight lines were a system of 

circles but they completed the axioms of Euclid. Then the two spaces are 

isomorphic. So it is possible to “trans late” every proposition in the ordinary 

plane geometry into a corresponding proposition in this Ideal geometry. We have 

only to use the words Ideal points, Ideal lines, Ideal parallels etc. in the ordinary 

points, lines, parallels. But we can invent relations which were unknown in the 

systems of circles, as we see through the figure 10.  

In figure 10 holds  

In the (Ideal) triangle ABC the sum of the angles is π. 

If ABC is rectangular and M the middle of BC then ΑΜ/ΟΑ.ΟΜ= ½ (ΒC/ΟΒ.ΟC) 

Yet (ΑB
2
/ΟΑ

2
ΟΒ

2
)+(ΑC

2
/ΟΑ

2
ΟC

2
) =ΒC

2
/ΟΒ

2
ΟC

2
. 

(Ideal Pythagorean theorem) etc.  
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6. Comment 

The interpretation of the Ideal p lane is not an interpretation of the world round us, as 

it is rejected by the observations, till now. The same happened with the Riemannian 

geometry of the curved space, whose  curvature  we never “saw”,   but we had to 

accept it as a reality if we want to interpret the reality of the conclusions of general 

relativ ity. 

After the  isomorphism through the inversion,   the Euclidean straight line and 

geometry, loses it’s absolute character supported from experience, and we have the 

beginning of the great revolution in mathematics, that of non-Euclidean geometries. 

The truth of the Ideal plane is an hypothetical truth, an Aristotelian form, in the 

realm of potential reality. The two isomorphic spaces changed the perspective of 

mathematics, separated them from the accepted set of init ial statements  (material 

axiomatics) which were linked with the intuition, and led to a deeper study and 

refinement of the axiomat ic procedure (formal axiomatics). 

Conclusions 

How could the Ideal geometry be real?  the straight line for us should be  every 

circle in the figure 11. We must imagine we are t iny and every segment ds, looks as 

straight line. Also the rays of light, trace out the circles of the system, with the point 

O being a b lack hole. If we lived in such physical conditions our geometry should be 

Euclidean.      
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Abstract : The present work revisits the classical Wulff problem restricted to 

crystalline integrands, a class of surface energies that gives rise to finitely  

faceted crystals. The general proof of the Wulff theorem was given by  

J.E. Tay lor (1978) by methods of Geometric Measure Theory. This  work  

follows a simpler and direct way through Minkowski Theory  by taking 

advantage of the convex propert ies of the considered Wulff  shapes. 

 

 

Introduction 

This work is a short though sufficiently self-contained incursion into the 

Wulff construction and the Wulff theorem for faceted crystals, mathematic - 

cally represented by the class of crystalline integrands. 

 

The aim of the Wulff   Problem is to find a surface whose total surface en- 

ergy is min imal for a g iven fixed volume. This classical problem is also  

known as the Equilibrium Shape Problem, and the solution is also called an  

equilibrium shape, or simply a crystal. The problem is named after George 

Wulff, who invented an algorithm to determine the final shape of a crystal 

that grows near equilibrium, based on Josiah Willard Gibbs  principle of the 

surface Gibbs free energy minimizat ion for the evolution of a crystal droplet. 

 

By convexifying   , one induces a   -metric on the dual space of the solu- 

tion space. Since such a class of problems have polyhedral solutions, we 

can dismiss the geometric measure versions of Brunn-Minkowski Theorem 
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from Federer and Wulff  Theorem by applying the Legendre transform to the  

canonical version of the Wulff construction and build our way to the Convex 

Geometry version of Brunn-Minkowski Theorem through geometric inequal- 

ities and convexity. We show equivalences between constructions and some 

 relat ions between the crystalline integrand and the area integrand version 

of the problem - isoperimetry and minimal surfaces. 

 

I. The Crystalline Variational Problem 

 

The Wulff  shape arises in surface energy min imization problems when the  energy 

function     is anisotropic. For isotropic energies and a given amount  of mass, the 

equilibrium shape is well knows: a ball, formally denoted by the n-dimensional 

sphere 
1nS 

 . Th is shape encloses the prescribed mass  whereas minimizing the 

surface area of it. This is stated by the classic Isoperimetric Inequality. 

For anisotropic energies, the analogous minimizer is the Wulff shape. Such  

energies have been heuristically misrepresented by simple functions that very 

often are not well-defined, presenting many singularit ies and unbounded en- 

ergy spots. We avoid this imposture following Taylor's Geometric Measure 

Theory characterizat ion of the energy. In this context, the surface energy, 

also called the energy function of the anisotropic problem, is an integrand, 

as defined below: 

Def.:[integrand] An integrand on  
1n

 is a function that will represent the 

surface energy function 
  

  1

0: 1, 0 , )n G n n      

where the Grassmannian   0 1,G n n   is the manifo ld that parametrizes ev- 

ery n-dimensional linear subspace of 
1n

, i.e ., all the hyperplanes of the 1n  -

dimensional Euclidean space. 

 

An integrand is defined constant  coefficient    iff  

 

     , , ,x p x       1

0, 1, .n p G n n     

 In this case,    is a function of its second variable only. An integrand is 

unoriented if it independs on the orientation of    .  We will assume all integrands 

are continuous, constant  coefficient  and positively oriented. 

 

Def.:[Wulff construction] Given an integrand  , plot it rad ially by taking 

each direction  
nv S   and calculating     on the positively oriented plane   

whose normal vector is  1, / , 0nv x x v    .We will denote by 
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 v
 and vice versa.   Plot   v in  v   direction:  v v .  

Then, for each v ,define the half-space   1 / ,n

vH x x v v    . 

Take the intersection of all half-spaces. The resulting set  W
  is the Wulff  shape 

of  , also called the crystal of     : 

 

n

v

v S

W H



 

 

For an isotropic energy,  =constant : the Wulff  problem reduces to the  

Isoperimetric Inequality and the crystal is an Euclidean ball; that is the case of a 

soap bubble. 

 

Obs.: We can extend homogeneously the function    in order to calculate it on 

other planes related to non unitary direction vectors by formalizing the explained 

abuse of notation defining the dual function  
*   as follows 

     * *: 0, ,nS v       

where v   as defined above,  * * p
p p

p

 
   

 
 . 

 

Note that since  W  is given by an intersection of half-spaces, then  W  is 

convex. A lso we can assume  0 W  always. The physical meaning of the 

origin is the crystal seed for growing a crystal, a t iny monocrystal that in - 

duces the orientation of the new crystal. 

 

Def.:[Legendre Transform]  Let  
1: nS     be a continuous function. 

The (first) Legendre transform of      is  

 
 *

, 0
inf

,v
v

v

 



 where 1   

  

 

An alternative construction of the Wulff  shape is based on the Legendre 

transform as in [5]: 
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Def.:[Fu's Wulff construction]   Let W  be the operator over integrands 

  
 *

inf
,nv S

v
W

v


 


  

where , 0v    . Then the crystal of      is the set enclosed by the radial 

plot of  W  , plotted as explained before. Also, the orientation of W
 is 

defined positive. 

 

 

Proposition: The two g iven definit ions of crystal are equivalent. 

 

Proof: Call  Z   the operator defined in Fu's construction instead of W  : 

( )W Z   : Let  y W  , i.e.  *, ( ).ny v v v S     Then  

 *, , ,
y y

y v y v y v v
y y

    

If  , 0
y

y v
y

  then we have 
 *

,

v
y

y
v

y


    . Since the inequality holds 

for arb itrary   v , then  

 *

inf ,
,nv S

v
y

y v


  i.e . y Z  

If , 0
y

v
y

   , then obviously the inequality holds, with y in the same  

half-space bounded by  
*,

y
x y

y

 
   

 
  ; ( )Z W   :  

Let  y Z  , i.e .   
*

, , 0
y y

y Z v
y y

 
   

 
.  
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Then :  

 

 
 

*

*, ,

,

nv y
y v S y v y v v

yy
v

y


       

 

for all 
nv S  but then  ( ) yn

vy H v S W      

 

 

II. Pathway through convexity 

 

It is easy to visualize what kind of Wulff  shape one gets when the inter- 

section of half-spaces is finite: a  polyhedron, except for unbounded and/or 

empty intersections. That is the case of anisotropic energies: we say that an 

integrand    is crystalline if its Wulff  shape, or crystal  W
 is a polyhedron. 

Now we take advantage of this fact: 

 

Def.:[extreme point] Given a set   ,nK x K    is ext reme if it cannot be 

expressed as a convex combination of any two other points of K  . 

 

Def.:[polytope] A polytope 
nP is the convex hull of a finite set: 

 1 2,p ,..., kP p p    . 

 

Def.:[polar body] Given a convex set K , the polar body of   K  is the set 

  * / , 1nK x x y y K    . 

 

Lemma: A supporting hyperplane H  to a bounded convex set K  contains 

at least one extreme point of K . 

 

Proof:  Denote the set of extreme points of K  by KE . Since K  is convex, 

 K K , so  K KE K E K   .  We also have that 

,H K H K     so 

the set of extreme points of H K , H KE  , is the set 
KH EE  . Now suppose 
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the claim is true for every set with dimension 1m  . Then it is also true for 

 

all sets of dimension m , since if a  given non-extreme point in m  dimension 

could be written as a convex combination in d imension 1m , then it would 

be sufficient to write it in m  dimension putting 0m  . But for dimension 

1, the claim is trivially true. Therefore it is true for any dimension.           

 

 

Theorem 1: A bounded convex set K  is the convex hull of its extreme  

points. 

 

Proof: Since  K KE K E K   , we only need to prove that 

 KK E . 

Suppose some x K
 
is not in  KE . Then there exists a separating hy- 

perplane H  that separates strictly x from  
KE . The parallel supporting 

hyperplane of K  that is strictly separated from 
KE  by H   must contain a 

point of 
KE  (lemma). Contradiction.                                                          

 

Corollary: Every polytope is a fin ite intersection of half-spaces. 

 

Proof: If P  is finite, then so is 
PE  . For each 

Pp E , let 
PA  be the set of 

supporting hyperplanes that contains p and also contains at least another 

extreme point of   P .  Then take 
'

p pA A  the subset that contains supp. hy- 

perplanes intersecting the maximum number of extreme points as possible  

(this number is well-defined since the very # P  is a majorant). The facets  

of P  will be contained on those hyperplanes; for each facet define the half- 

space oriented to contain the origin and take the intersection of it. Because 

of the theorem, P  is contained in this intersection.                                      

 

Theorem 2 : If K  is convex, then 
**K K .  

 

Proof:
 
 **K K  Let x K  . Then for any 

*y K we have , 1x y  . 

But then,  since x  is arb itrary, it has to be in 
**K . 
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 **K K   Let 
**y K and suppose y K . Then there is a separating 

hyperplane H that separates y  from K ,  / , 1H x x v  , , 1x v   

when x K  and , 1y v   

 

But if , 1x v   when x K , then  
*v K  and y, 1v   since  

**y K . 

Contrad iction .                                                                                       

 

Theorem 2 reveals a link between Convex Geometry and Functional Analy- 

sis: given a polyhedral crystal W , we apply the corollary to define a convex 

C  whose crystal coincides with W , so that 
C  is the "smallest" enclosing 

function for W . For that, we use the theorem 2 by taking the polar of W  .  

Since   is a linear operator, we know its behavior everywhere by homo- 

geneous extension. By Riesz representation theorem, the crystal W  is the 

polar of the unit ball 1C    in the dual norm. That gives us the surface 

energy scaled so that the Wulff  shape is given in units of surface free energy.  

 

 

Def.:[Steiner symmetrization] For a convex body  
nK    and  a  

1nS  , 

the Steiner symmetrization of K  in the direction of   is given by 

   . Pr ,S K x x oj K 
     

where   
1

.
2

K x     Some propert ies are the fact that  

   ,S K K S K   is convex and the convex Minkowski sum of 

symmetrizat ions equals to the symmetrization of the convex sum of the bodies. The 

symmetrizat ion process slices  K  along     , aligning the slices by putting their 

midpoints in  
.  
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Figure 1: Example of Steiner symmetrizat ion of K  along the vector 
†  

 

A useful classical result is stated below without its proof, which follows di- 

rectly from the several interesting properties of the Steiner Symmetrization  

process. A more curious reader might refer to [6], [20] or [21].  

 

Theorem:[Steiner-Schwarz] Given a convex body  
nK    and F  a  k-

dimensional subspace, then there exists a sequence of symmetrizations  
j  such 

that the limit ing body K  satisfies      ,K x F K x F     where 

 K x F   is a k dimensional ball centered in x  with radius   .r x  

 

Theorem: [Brunn's Concavity Principle] Given 
nK  a convex body and  

F a k dimensional subspace of 
n

, the function :f F  given by

   
1

nf x K x F      is concave on its support. 

Proof:  Apply the former theorem and use that  sup Pr ,
F

t r x oj K

       
2

1 .

1
2

kkf x K x F V ol S r x
k

    
 

  
 

      

 

 
†

Figure adapted from [24] 
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Figure 2: Applicat ion of Steiner-Schwarz to prove Brunn's Concavity 

Principle, where n = 3, k = 2 
††

 

 

The Brunn-Minkowski inequality is the crucial ingredient for p roving the optimality 

of the Wulff shape. We conclude this section with a proof based  on convex sum of 

two convex bodies and the Concavity Principle:  

 

Theorem:[Brunn-Minkowski Inequality]  Given non-empty compact subsets 

,A B  of 
n

 
              

1 1 1

n n nA B A B      

 

Proof: Take the Steiner symmetrization of A  and B  to find two convex bodies in 

n
. Create their convex sum L  on 

1n
by taking the convex hull  of 

  0S A  and    1S B   , where 0 , 1  belong to the additional real axis for  

the convex sum, so that     , .nL t x x t L    

 

Then  
       1

.
2 2 2 2

S A S B S A S B
L     

   
 

 By the concavity 

principle   applied for  
nF    

   
   

1

1 11 1

2 2 2

n

n n
S A S B

S A S B 
 


                                   

 
††

Figure adapted from [24] 
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III. The Wulff  Theorem 

 

Wulff's 1901 seminal article provided a method to predict crystal shapes  after Gibbs' 

proposition on the min imization of surface energy; since then, many have worked on 

the subject. Nevertheless, it was Taylor ([1]) who  proved that the Wulff  

construction determines the unique min imizer W
 for the integral of   over the 

boundary W . The proof requires some concepts  from Geometric Measure 

Theory, which are now introduced: 

 

Def.: [integral current] An integral n-d imensional current 
1nS  is a 

rectifiable o riented hypersurface generalized through GMT so that eventual 

anomalous portions are still well-behaved enough to allow integration with 

respect to the measure S  on 
1n

, which is a function of the Hausdorff 

measure 
nH  restricted to the support of S , which can be arbitrarily closely 

approximate by a n-d 
1C  manifold. An interesting property of currents is  

that their boundaries also have the essential properties to allow boundary 

integration (for more see [3]). In the next theorem P  will denote the cur- 

rent whose boundary is an integral current. The total surface energy of an  

integral current 
1nS  is given by : 

    n

S

x S

S n x dH x


     

We also define for 0h   the homothety in  1n

h x hx  and the inte- 

grand   the isomorphism  #

h

hW W   following [1]. 

 

Theorem:[Wulff] Given an integrand   , then for every n-dimensional cur- 

rent  
1nP   

 

    .W P     

 

up to translations and homotheties, such that their mass coincide,  M P   

 M W  

 

Proof:  Let P  be a current with P  its positively oriented, piecewise 
1C  

boundary. Then  
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         
   

0

supt

lim

h

h

P P x d P x W P x d P x

M P M P

h





        




 
 

 

where   
 

   M W M P     and     1h nM W h M W

   and 
hP  is 

the positively oriented current given by the Minkowski sum x y   where  

suptx P  and supt hy W   . Then Brunn-Minkowski inequality 

implies: 

 

         

 
 

   
 

       

1

0 0

1 1

0 1

0

1
lim lim

1 1 1 !
lim lim .

! 1 !

lim . 1 1 .

nh

h h

n n
i

h i

h

M P M P h M W M W

h h

h M W n
M W h

h h i n i

M W n n M W



 

 

 



 

 


  


  
 

 

   



 

 

In particular for P W , the above inequalities are equalit ies. By using the fact 

that    M P M W , we conclude that     .W P     

Such shape is unique modulo translations and homotheties, and since the  mass is 

fixed, follows the uniqueness of W .                                                           

 

IV. Conclusion 

 

In this exposition, different fundamental areas of Mathemat ics were gathered to 

structure a simple mathematical basis for the equilibrium shape problem with a 

crystalline integrand. A natural generalization of the Wulff construction for non -

equilibrium growth is to replace the energy function for the correspondent potential 

that controls the process, the mobility function. Also, through Kinetic  PDEs, a 

flourishing area of mathematical modeling  in the Sciences, it might be of interest to 

study the growth and the stability of such shapes. 
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وحُي پذیزع مقبلات  
 

دستبَسد َ  وتبیج تحقیقبت اسبتیذ َ پژٌَشگشان سشتً ٌبی فىی مٍىذسی َ    CJCMEوششیً تخصصی 

. علُم پبیً سا مىتشش می کىذ 

 

اص محققبوی کً بشای ایه وششیً مقبلً تٍیً می کىىذ دسخُاست می شُد ضمه سعبیت دقیق مفبد آئیه وبمً 

اص ( صفحً 20 )  Word ، مقبلات خُد سا دس یک وسخً فبیل CJCMEوگبسش وششیً تخصصی 

. ل داسوذ اسسب    CJCMEmail@gmail.comطشیق پست الکتشَویک

 

دس پزیشش ، عذم  CJCMEتمبمی مقبلات تُسظ داَسان ریصلاح اسصشیببی می شُوذ َ وششیً تخصصی 

. پزیشش ، حزف َ یب کُتبي ومُدن مقبلات بشای چبپ آصاد است 

 

مُسد  بشسسی قشاس می گیشوذ کً قبلاً دس وششیبت    CJCMEفقظ مقبلاتی جٍت اوتشبس دس وششیً تخصصی 

. یگش بً چبپ وشسیذي ببشىذ د وهشیپژعلمی 

 

وُیسىذگبن مقبلات مسئُل وُشتً ٌب َ وظشات خُد ٌستىذ َ آساء َ وظشیبت آوبن الضامبً وظش اعضبی ٌیبت 

 .تحشیشیً ویست 
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 دَفصلىبمً : اوتشبر دَري

 . ارمىی ، رَطی ، فبرطی ، اوگلیظی : سببن وشزیً 

 وظخً :  500   شمبرگبن

یظیبن علی محمذ طیذ دکتز : امتیبس صبحب  رئ

یظیبن علی محمذ طیذ دکتز : مظئُل مذیز  رئ

یض یظیبن علی محمذ طیذ دکتز : تحزیزیً ٌیت رئ  رئ
 75729   : وشزیً مجُس شمبري

 رَدطز : اوتشبر محل

یظیبن علی محمذ طیذ دکتز  1165 -44815   پظتی صىذَق ، رَدطز ، گیلان : وشبوی    رئ

 CJCMEmail@gmail.com ,  smaraissian53@gmail.com : الکتزَویک  پظت

+( 98)  13             4988 143 911( 98+ )            ,     42613646 - :تمبص   

 

 ٌىز      َ  اوذیشً پُیبن ري ٌىزیَ  فزٌىگی مُطظً : تىظیم َ بىذی صفحًَ  َیزاطتبری

rpandishehonar@gmail.com 

 

 

 
 
 

  1394اطفىذ  : تبریخ اوتشبر  
 

وشزیً تخصصی  بزای ایىٍب جشَ  تزجمً ، بزداری وظخً میشان،َ  شکل ٌز بً تکثیز َ چبپ اس اعم حقُق کلیً

  Caspian Journal of Computational & Mathematical Engineering (CJCME) 
ن اطبص بز متخلفیه. اطت محفُظ  .گزفت خُاٌىذ قزار تعقیف تحت ٌىزمىذانَ  مصىفیهَ  مُلفیه اس حمبیت قبوُ
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