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Abstract: We consider the Dirichlet problem in the unit disc for the linear partial

differential equation with constant coefficients. The formulas for the determination

the defect numbers of the problem were found, and for the improperly equation was
determined the functional class, were this problem is Notherian.

Let D be a unit disk of the complex plane and I" = D . We consider an elliptic
equation

2N aZNU
ZAkaXGyZNkzo’ (X’y)ED’ (1)

where A are complex constants (A) #* 0) ,such that the roots 4;, j=1,...,2N
of the characteristic equation

2N
ZA(/'LZka :07 (2)
k=0

satisfy the conditions
34, >0,k=1,...,P, 34, <0, k=P+1,...,2N . ©))

The solution U of the equation (1) (in the class C*" (D)ﬂC(N_l’“) (DUT))

satisfies Dirichlet conditions:

o“U
W :fk(X,y), (ny)EF, k=0,...N-1 )

on the boundary I".
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Here f, e c(Nkte) (F), (k =0,...,N —1) are given functions on T, ai is
r
the derivative with respect to the inner normal to .
The cases P =N (the equation (1) is properly elliptic) and P = N when the
equation (1) is improperly elliptic, are sufficiently different. If the equation (1) is
properly elliptic, then the problem (1),(4) is Fredholmian (see [Tovmasyan 1998],
[Lions, Madgenes 1968]). In this case we want to define necessary and sufficient
unique solvability conditions and the defect numbers of the problem if these
conditions fail. In this paper we denote by defect numbers the numbers of linearly

independent solutions of homogeneous problem (when fk =0 forall k)and the

number of linearly independent conditions to the boundary functions fk , when

inhomogeneous problem has a solution. For improperly elliptic equation (1) the
Dirichlet problem (1), (4) (as all classical boundary value problems) is neither
Fredholmian nor Notherian (see [Bitcadze 1961]). More precisely, this problem is
not normal solvable, and for some values of coefficients, this problem may have
infinite defect numbers. In this case we want to define the solutions of homogeneous
problem and the class of boundary functions for which the inhomogeneous problem
has a solution. In the paper we present some results for the problem (1), (4) in case
of elliptic equation (1), and some considerations about homogeneous problemfor

not elliptic equation (1) (when some roots /1j of characteristic equation (2) may be

real).

We start fromthe elliptic case. In the paper [Tovmasyan 1969] complete research of
the Dirichlet problem for the system of second order elliptic equations with constant
coefficients in elliptic domains was conducted. The defect numbers were defined in
explicit form. The difference between weakly and strongly connected elliptic
systems was found. It was shown that the defect numbers are finite and the problem
is Fredholmian for weakly connected systems and neither Fredholmian nor
Notherian for strongly connected system. The second order improperly elliptic
equation: the equation (1) for N =1, if the roots of equation (2) satisfy the

conditions 34, >0, JIA, > 0 (orstrongly connected system of 2nd order) was

studied in [Tovmasyan 1968]. The Dirichlet problem for this equation in the unit
disc was completely researched. The conditions on the coefficient of the equation
(1), for which the homogeneous Dirichlet problem (1), (4) has infinite number of
linearly independent solutions, were found. In the first time was presented the
functional class where this problem is Notherian. The formula of the general
solution of the equation (1) makes it easier to research the problem in the unit disc
and the representation of this solution on the unit circumference was also found in

this work.
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Lemma. [Tovmasyan 1968]. Let |y| <1 and function @ is analytic in the domain
D(u) = {Z +u7:|z| <1} and is from the class C(*) (D(y)).Then for |Z| =1

the function CI)(Z +y7) may be represented in the form

®(z+ 17) = p(2)+ (7). ¢(z)=Z:;Dkz". ©

The function @ is uniquely determined by the function ¢ :

o()=g| Ve \142—4ﬂ pg ETNe T \142—4# ©

Here ¢ e D (1) and we get a branch of the root, for which 4/71«/(2 —-4u—-1

for £ —o0.
Using this lemma, it is possible to reduce the problem (1), (4) to algebraic problems.
To explain this we consider the simplest case - N =1, P =1. Let’s denote

i— i+

S A Q
1+ 4 1—4,

where /1]- are the roots of the equation (2). Then the solution of the equation (1)

may be represented in the form

u(x,y)=®,(z+u7)+®,(7+w2), z=x+iy, (x,y)eD, ®)

where 14 are constants (7) (taking into account the condition 34 >0> 34, , we
have‘,uj ‘ < 1), and the unknown functions (Dj ., j=1,2 areanalytic in the
domains D(,ul) = {Z +,ul?:|z| <l} and D(,uz) = {7+,uzz : |Z| <1}

correspondingly. Substituting the representation (8) in the boundary condition (4)
(for N =1, P =1 it remains the only condition) we get

@, (e“9 +,ule‘“9)+CI>2 (e“" +,u2e‘9) =f,(0), 0<O<2r. 9

Now, using lemma, represent the functions (Dj , J =1,2 via functions, analytic in

the unit disc:
q)l (eia + Me_ig) =, (eia ) + o, (/vﬁe_ig )’ w0
D, (e"i‘g +yzei6):(p2 (e‘i9)+(p2 (,uzeig), 0<0<2r
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The functions ¢, are analytic in the unit disc, and, therefore, may be expanded via

the Taylor series; since the function f; belongs to the class of Holder continuous
functions it may be represented via the Fourier series. We get

(”J(Z):iAijkv 7|<1 j=12 f0(6’)=idkeik9.
k=0

k=—00
1)
Let’s substitute the representations (10) and (11) in the boundary condition (9) :

- iko - k o—ik& - —ikg - k Aik&
S A D AU+ A S At
k=0 k=0 k=0 k=0

:deeik", 0<0<2r

k=—o0

This equality holds for all points of the unit circumference, therefore, coefficients of
corresponding powers of e*?, k = 0,+1,+2,...fromthe left and right parts of the
equality must be the same. We get

k _
At Pt =0 o1 o, 12A, =,
Aty + Ay =d_
12

Thus, the problem (1), (4) is reduced to the systems (12). The determinant of the
main matrix of the system (12) is equal

1 k
A= = () 20 k=12 ®3)

k

Since ‘,uj‘ <1 these determinants are not equal to zero. So, we determine the

coefficients A, , A, for K =1 uniquely. The determinants A, tend to one for
kK — o0, hence the corresponding functions ®; and the boundary function f
belong to the same functional class. After determination of the functions ?; using
lemma, we get the functions (I)j and therefore, uniquely determine the solution of

the corresponding problem (1), (4). We cannot determine the coefficients A, A,

because we have only the sum of these coefficients, but it is enough for the
uniqueness of the problem. Thus, the Dirichlet problem (1), (4) for the properly
elliptic equation (1) is uniquely solvable (this result was proved earlier, using
another method, see, forexample, [Lions, Madgenes 1968]).
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Let’s consider the case of the second order improperly elliptic equation -
N =2, P =2.Wesuppose, that A, # A,, Slj >0, /”tj # =i . In this case,
denoting
i-2
ﬂj_i+/1j’ i=12, (14)
we present the general solution of the equation (1) in the form:
U(X,y) =@, (2+47)+P,(z+1Z), z=x+iy, (x,y)eD

(15)
Now, using the considerations, analogous to the case of properly elliptic equation
(1), we reduce the problem (1), (4) to the system:

Ay + Ay =d
k k k .
{ k K_d k=L 2A,+2A,=d,. (16)

At + Ay, =0
In this case the determinant of the system has following form:

1 1

k k

MK
Therefore we have the following result:
Theorem [Tovmasyan 1968]. We consider (1), (4) problemfor N =P =2. We
suppose, that 4, # A4,, A; = %i, IA; >0. Let’s define y; by the formulas (14).

K =

= 1y — 1,

Without loss of generality we suppose that |,L12| < |,ul| and introduce A11(|/“1|) -
class of functions, analytic in the ring |,ul| < |Z| <1 and satisfying Holder condition
in the closed ring |,ul| < |Z| <1.Then

1) If :exp(Zﬂimn‘l)uz for integers M and N, then the

homogeneous problem has infinitely many linearly independent
solutions and for the solvability of inhomogeneous problemiit is

necessary for the boundary function f, to satisfy infinitely many
linearly independent conditions.

-1 _

2) |If (27T) arg ,ul,uzl isan irrational number, or |,LLL| ¢|,uz| then the
homogeneous problem has a unique solution for arbitrary boundary
function fromthe class A (|M|) .

Other cases of the location of the roots in this paper were considered too. And it
must be mentioned that the functional class from this article, where classical

8
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boundary value problems for improperly elliptic equations may be considered, was
defined for the first time.

After that investigations were continued for properly elliptic equation (1).

In [Soldatov 2005] the unique solvability of the Dirichlet problem for the second
order elliptic systemwas investigated. For the fourth order properly elliptic equation
N = 2, P = 2 the necessary and sufficient conditions for the (1), (4) problem's
unigue solvability were found in [Babayan 1999] and [Buryachenko 2000]. The
analogous result for higher order equation (if the characteristic equation (2) has only
simple roots) was achieved in [Babayan 2004], [Tovmasyan 2002], [BursKii,
Buryachenko 2005]. The properly elliptic equation, when the multiplicity of the
roots of equation (2) is not greater than two, was considered in [Irician 2003]. If the
unique solvability fails, in [Babayan 1999], [Babayan 2004], [Tovmasyan 2002],
[Irician 2003] the formulas for the determination of the defect numbers of (1), (4) by
the coefficients of (1) were found. In [Tovmasyan 2002] the problem (1), (4) was
researched in arbitrary multiply connected domain (it was reduced to a second order
Fredholmequation). In all these articles it was supposed, that multiplicity of the
roots of the equation (2) is not greater than two. The problem was, that the known
formulas for representation of the general solution of the equation (1) ([Bicadze
1966], [Vekua 1948], [Tovmasyan 1998]) do not «work well» in the case of higher
mu ltip licity of the roots of characteristic equation (2).

In [Babayan 2003] the representation of the general solution of equation (1), which
is appropriate for the cases of simple and multip le roots, was found.

General solution of the equation (1)

Let us represent the equation (1) in the complex form, using operators of complex

differentiation
. 0 1({ o .0 o 1( o0 .0
Z=X+HIlY, —=—=| ——1— |, —=—| —+1—|.
(674 Z(GX ayj 574 Z(OX ayj

The equation (1) is reduced to the form
b0 oY iyfo o)
—— = ——v.— | U=0, 17
Q(a H az] 1,]1(@2 JGZJ 40
where
i—4, i+A

/uj:i+/1 for 34;>0and v; == L for 34, <0 (18)

j 1= 4

zpllk =P, Zq:mj =2N-P, |u|<1,k=1,p, \vj\<1, j=1q.
k=1 j=1

The general solution of (1) may be represented in the form:



P |k—1 a q mj—l b
U(x,y):;;(a—ijj d)ka(z+yk7)+zzl:bzz(; ((%j Y (Z+7,2)

19)
Using these notions, the unique solvability conditions of the problem (1), (4) for
properly elliptic equation (1) may be written in following form [Babayan, 2003].

If g4, has the multiplicity 1, ,and v has the multip licity m; , then we define the
N -dimensional vectors
T

8 = (Coutd ™t Cout, C2,0,...,0) (20)

“ T
bi* =(0,...,0,C{,C,v},-- Ch v} ) (1)
where 0<s<Il -1, k=1,...,pand 0<t<m;-1, j=1,..,q.Let A and

B be a square matrices of order N

_ a1 A1 [ 1 I — [ my 1 m
A—(ai...ailaz...ag...ap...ap"), B—(bl...b1 ...bq...bqq), (22)
and M, H are Jordan matrices

M :diag(Jll(M)...le(yp)), H :diag(Jml(vl)...Jmq (vq)). 23)

Here J, (/1) is a Jordan block of order K with diagonal elements A .
The problem (1), (4) is uniquely solvable if and only if the matrix

A BH'
Q= . (24)
AM B
is non-singularfor | = N +1,N+2,...ie.
A, =detQ =0, I=N+1,N+2,.... (25)

If forsome Kk, > N +1 we get Ako = 0, then the homogeneous problemhas a

solution, which is a polynomial of order N + kO —1. The boundary functions in this

case must satisfy one orthogonality condition for the solvability of inhomogeneous
problem. Therefore the defect numbers of the problem (1), (4) will be determined by
the formula:

K,=K,= 3 (2N -ranke,) (26)

I=N-+1

10
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In these formulas it was supposed, that all roots are not equal =+i. This case was
considered earlier ([Vekua, 1948], [Tovmasyan, 1998]). In our notations, if some

root is equal +i with multiplicity k then in the matrix Q. matrix column
T
(Ik O) (where |, isa Kk orderunit matrix) must be added from the left or

. T . .
matrix column (0 |k) from the right correspondingly.

Example. For N = 2 in the case of properly elliptic equation (1), supposing
L #A, Sij >0, j=12 A4, #1,, S/Ij <0, j=34,we determine u; and

v, by the formulas (18) and the matrix (24) €, has the form:

k+1 k+1
1 R A

k k
=" N V2yo3y @7

k k
H Hy Vi v,

/llk-#l /J;H—l 1 1
- [ 1 1 J 5 = (Vl VZ]
oy 11
0 1 0 v,

The case of improperly elliptic equation may be considered in the same way. In
[Babayan 2007] fourth order equation (1) was investigated. In this article it was
shown that the different locations of the roots reduce to different results about
solvability of the problem (1), (4). As an example, let’s formulate one of the
obtained results.

Theorem. We consider the case 4, = 4, # A, 4; #1, 34; >0, for j=1,2,3;

and in (27)

A, #—1, 34, <0.In this case equation (1), using notions (18) is reduced to the

d aV/( o oo o
——u— || ==, — || ==v—|U=0, (X D.
(67 Mazj (az ﬂz&zj[&z Vafzj (xy)e

form:

(28)
We represent the Dirichlet boundary conditions in equivalent form:
ou
>l = F(xy), —| =F(xy), (xy)el; u(1,0)=f(1,0)
Z\r r

(29)

11
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Here Fl(x,y):é(g(x,y)ﬂgf—(p(x,y)}

_ o |
F (%, y)=§(g(x, y)=ig (% y)} z=re’ el (30)

Let’s denote

1 0 1 vt
H 1 Hy V"
A L, v)=det
k(lLll H ) K k'ulk—l ,U; v
A (ke 1
EdetQk, k:3,4,...

Then the homogeneous problem (28), (29) has a finite number of linearly
independent solutions, which are defined by the formula

o0

N, = > (4—rankQy,)- (31)
k=3
For the solvability of the inhomogeneous problem it is necessary for the functions

(29) Fj ( j=1,2)tobeanalytic in thering 0 < |Z| <1 and sufficient, that these

functions satisfy Holder condition in the closed ring O < |Z| <1 with their first order

derivatives.
It must be mentioned, that in case of fourth order improperly elliptic equation (1) an
appropriate set of boundary functions for the normal solvability of the problem (1),

(@) is the set A, , () of functions analytic in the ring & <|2| <1 and with first
order derivatives satisfying Holder condition in the closed ring 0 < |Z| <1

(compare with the set A1,1 (|,ul|) from [Tovmasyan 1968]).

Unique solvability of the Dirichlet problem was considered not only for elliptic
equation (1). In the papers [Bourgin, Duffin 1931], [John 1941], [Alexandryan
1960], [Hovsepyan 1969] the conditions of nontrivial solvability of the
homogeneous problem for the second order hyperbolic equation in the different
domains were found. Further, in the [Burskii 2002] "equation-domain duality
relation™ was proved which in our case has the form:

L(DX)[(1—|X|2)N u(x)} =0, (A+1)"[L(&)v(£)]=0.

12
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It was shown that every nontrivial polynomial solution of the second equation
corresponds to the nontrivial polynomial solution of the original equation. Using this
result the Dirichlet problemnontrivial solvability question for arbitrary (may be not
elliptic) equation (1) was investigated in [Buryachenko 2000], [Burskii 2002],
[Burskii, Buryachenko 2005], [Buryachenko 2010].

We consider the problem (1), (4) in the unit disc. In all cases we get, the
homogeneous problem may have polynomial solutions only. The analogous results
may be proved in elliptic domains too. In some sense this shape of domain is
important. To see that, we must mention the article [Chamberland, Siegel 2000]
were was proved, that the problem

Au=0, (x,y)eR* u(x,y)=f(xy),ony(xy)=0,
where f,y are polynomials, has the polynomial solution U, such that

degu <deg f forarbitrary polynomial f only in the case deg) < 2,thatis,

the boundary of the considered domain must be the second order curve.
Thus, we get the formulas (26) for the determination of the defect numbers of the
Dirichlet problem for properly elliptic equation (1). The sum in this formula is finite,

because det (2, — ¢ =0 for kK — oo, and therefore, rankQ, =2N for
sufficiently big Kk . A question can be asked here: What value may have the defect
numbers K, and K,? Are they big or small? We can answer to this question for

some cases of the fourth order equation (1).
Let’s consider fourth order properly elliptic equation (1) when the roots of the
characteristic equation (2) satisfy the condition:

A =1, A4, #1, I, >0; S/Ij <0, j=34.
In this case, using the notations (18), the equation (1) may be represented in the

form:
o( o o\l o0 o\ 0o 0
— == || == || =——v,— U =0, (X, D,
az(az ”Zazj(az Vlazj(az Vzaz] (xy)e
(32)
were |,uz|<1, ‘Vj‘<1for J=12.Let’s denote O = 1,V,, ¥ = ,Vv, . The

following theorem was proved.
Theorem. [Babayan 1999]. The Dirichlet problem (32), (4) is uniquely solvable if
and only if one of the following conditions is satisfied:

H pm=0,

2 p, =0, v, =v,and

ol

—2

A, = j+16 =0, k=34,..., (33)

Il
o

J

13
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3 w, =0, v =wv,and

k2 i
Ay :zz5l7j_l #0, k=34,.... (34)

j=0 =0
If the conditions (33) (or (34)) failed for some number k0 , then the homogeneous
problem (32), (4) has onesolution — polynomial of order Kk, +1, and for the
solvability of the corresponding inhomogeneous problem it is necessary for the
boundary functions to satisfy one solvability condition (for different k; these
conditions are linearly independent). Thus the defect numbers of the problem (32),
(4) is the quantity of the A, (or A, ) which are equal to zero.

Later this result was refined. In [Babayan 2011] it was proved, that if y =r¢o
where r is the real number (or what is equivalent v, = rv,), then the condition

(34) may fail only for one number ko, therefore, the defect numbers of the Dirichlet
problem (32), (4) may only have two values in this case: zero, when the problem is
uniquely solvable ((34) holds), and one if (34) failed. The same result was proved
for the case 14, # 0, v, =V, in [Babayan 2012].

In [Babayan 2015] we consider the case when fourth order equation (1) has double
roots.

Supposing, that the roots of characteristic equation /11- (Jj=1,2,3,4)satisfy the

condition

A= L=, ﬂjiii, 1=1,2,3,4, (35)
we separately research the following three cases: 1) 34, > 0> 34, — the equation
(1) is properly elliptic, 2) IA, = 34, > 0 — the equation (1) is improperly elliptic,

and the last case 3) if one of the roots is real — the equation (11) is not elliptic.

First, using the operators of complex differentiation we represent the equation (1) in
the complex form.

1). The case of properly elliptic equation. Using operators of complex
differentiation, we represent the equation (1) in the form:

o oY(a oY _
(E—ﬂaj (E_VEJ U(X, y)—O (36)
Here from (18) n = ?_A“ , V= ?+/13 ,and, therefore, fromthe conditions
1+4 -4
J4, > 0> 34, and (35) we have
|/¢|<1, |V|<1, uv =0, @37

14
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We represent the conditions (4) in equivalent form (29). We suppose in this case
(La) (@) ()

feC (F) geC (F) , therefore, F; belongs to the space C (F) for

j=12.

Theorem1. 1 Let'sdenote z = yvand t = 0.5( 2%+ Z’O'S) . Then the Dirichlet

problem (36), (4) is uniquely solvable ifand only if
UZ (t)=k? k=34,..., (38)
where U, , is the second kind Tchebychev polynomial of order k —1. Ifthe

conditions (38) fail for any k0 , then the homogeneous problem (38), (4) has a

k-1

nontrivial solution, which is a polynomial of order k;, +1. In this case one linearly

independent condition on the functions FJ. is necessary for the solvability of the

inhomogeneous problem (36), (4). Therefore the defect numbers of the problem
(36), (4) are equal to quantity of numbers for which the condition (38) failed.

2). Improperly elliptic equation. In this case we have 34, > 34, > 0, therefore, an
equation (1) may be represented in the form:

(2- gﬂg_ gjzu(x y)=0 -
a “a)\a e\ |
where ﬂl:%, #2::;;133.Weget:

t# || <1, || <1, (40)

Let's define the functional class, which is necessary for further considerations

Definition 2 We denote B™*) (&) the class of functions analytic in

R= {Z 0< |Z| < 1} ,which belong to the class C (R) (i.e. satisfy the Holder

condition in the closure of R ) with their derivatives of order not more than M.
The following statement is proved.

Theorem 2. 3 We suppose that |,Lt1| 2 |,Uz| and denote Z = 4,44 and

t= 0.5( 2+ 2_0'5). Let the boundary functions in (29) F; for j=1,2 belong

to the class B(l’a) (|ﬂl|) . Then, ifthe conditions (38) hold, then the problem (39),

(4) is uniquely solvable. If the conditions (38) fail for any K, , then the homogeneous

15
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problem (39), (4) has a nontrivial solution, which is a polynomial of order k; +1.

In this case one linearly independent condition on the functions Fj is necessary for

the solvability of the inhomogeneous problem (39), (4). Therefore, the defect
numbers of the problem (39), (4) are equal to the quantity of numbers for which the
condition (36) failed.

3). Non-elliptic equation.

Theorem 3. 4 Let the numbers g4, 1,, z, t be defined as in theorem 2. Then the

homogeneous problem (39), (4) has no nontrivial solutions ifand only if the
conditions (36) hold.

Example. Let’s consider an equation (36). Expanding brackets, we get:

[%(1—4;;v+y2v2)—2y 6223 1+ pv)-2v 6:382 (1+,uv)+v2%+,u2 %)u(x,y) =0,
N2
It is easy to verify, that the function U (X, y) = (1— 7z ) is a solution of (36) if
and only if
1-4uv+ v =0=1-4z2+7°=0 <::>U22 (t)—32 =0.
On the boundary I" this function vanishes. Thus, if the condition (38) fails for

k = 3 then the fourth order polynomial U is a nontrivial solution of the
homogeneous problem (36), (4).

Now, let’s draw the graph of the curves L, defined by the equations

U1 (X, y)| =K . we draw it in the unit disc ((X, ¥) € D).
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ContourPlot [{Abs[ChebyshevU[1, x + Sqrt[-1]*y]] == 2, Abs[ChebyshevU[2, x + Sqrt[-
1]*y]] == 3, Abs[ChebysheVvU[3, x + Sqgrt[-1]*y]] == 4, Abs[ChebyshevU[4, x + Sqrt[-
1]*y]] == 5,Abs[ChebyshevU[5, x + Sqgrt[-1]*y]] == 6, Abs[ChebyshevU[6, x + Sqrt[-
1]*y]] == 7, Abs[ChebyshevU[7, x + Sqgrt[-1]*y]] == 8, Abs[ChebyshevU[8, x + Sqrt[-
171*y]] == 9, Abs[ChebyshevU[9, x + Sqgrt[-1]*y]] == 10, Abs[ChebyshevU[10, x + Sqrt[-
1]*y]] == 11,Abs[ChebyshevU[11, x + Sqrt[-1]*y]] == 12, Abs[ChebyshevU[12, x + Sqrt[-
1]*y]] == 13, Abs[ChebyshevU[14, x + Sqrt[-1]*y]] == 15, Abs[ChebyshevU[26, x +
Sqrt[-1]*y]] == 27, Abs[ChebyshevU[200, x + Sqrt[-1]*y]] == 201, Abs[ChebyshevU[300,
X+ Sqrt['l]*y]] ==301 }l {X, -1, 1}1 {yv -1, l}]

Obtained in Wolfram Mathematica 9

We see, that these curves may intersect only for t =+1, hence the condition (38)

may fail only for one K. So, in this case the defect numbers of the problem (36), (4)
may only be equal to zero and one. Therefore, we can suppose that if the defect
numbers of the problem (1), (4) for fourth order equation (1) in elliptic case are
finite, they are not greater than one for an arbitrary location of the characteristic
equation’'s roots, but this supposition must be proved.
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A unified approach to the data fitting problem
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Abstract: FromW kipedia, the free encyclopedia
"Curve fitting is the process of constructing a curve, or mathematical
function, that has the best fit to a series of data points, possibly subject to
constraints. Curve fitting can involve either interpolation, where an exact fit to the
data is required, or smoothing, in which a "smooth" function is constructed that
approximately fits the data. Fitted curves can be used as an aid for data
visualization, to infer values of a function where no data are available, and to
summarize the relationships among two or more variables."
We analyze some interpolation and approximation methods and propose a general
method of data fitting procedure. Two computer programs are presented.

The oldest data fitting algorithm is described by the Lagrange interpolation formula.

For the given data set M = {(Xk, Y )}Ezo , Where no two X, (the nodes or knots)
are the same, it is necessary to find the polynomial of the least degree that at each
X, assumes the corresponding value Y, . This problem is always solvable and the
solution is unique. Indeed, if the interpolating polynomial has the form
P(x)=a,x"+a, X" +--+aXx+ay,
then

a X +a X0+t aX, +ay =Y,

X 3, Xk X Ay = Yy,

n n-1
ax,+a, X, +--+aXx, +a, =Y,

The principal matrix of this systemis the Vandermonde matrix V with non-zero
determinant, hence the solution (interpolating polynomial) exists and is unique.
The matrix V is notoriously bad conditioned so usually another way is chosen. One

starts by the product @ () =ﬁ(x—xk)
k=0

and introduce the Lagrange fundamental polynomials
()
(%)= (1)

(x=x o' (%)’
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satisfying the biorthogonality condition I, (X,,) =4,

km 1
Finally P(x):Zn:yklk (x).
k=0

The uniqueness of interpolation problem’s solution imp lies that

N Ezn:x;"lk (x),m=0,1,---,n-1,
k=0

k,m=0,1,---,n.

Conceived to serve as a tool in the investigation of functions, interpolation
polynomials suffer two serious flaws. The first is the polynomial wiggle, i.e.
increasing the degree of

12

1

0a

06}--

04t

02

0

032 H--

04}

S L s N T T N I S
1}

Fig.1. Lagrange fundamental polynomials

the polynomial makes the oscillations very large (Runge phenomenon, [5]). The
second is the impossibility to handle arbitrary plane curves (potentially multi-valued
functions).

—_—f

-02
E:

Fig.2. Function f (t) = and the interpolating polynomial

1+t2
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For the same knots another interpolation formula may be obtained, introducing
Hermite-Fejer basic polynomials

4 X n
hk(x)—[]_ @ E ))(x xk)jl ( ) Onehas >'h, (x)=1.
k=0
Example. For the interval [—1;1] and two nodes {—1;1} the Hermite-Fejerbasic
X

3X+2 ,h ( )—2+3X (see Fig. 3) and the

polynomials are h, (x) =

. . . . 3x—x3
interpolating polynomial for x is .

09r

08F

07r

06r

051

0.4r

03r

02r

01F

Fig. 3. Hermite-Fejer basic polynomials

According to Fejer's theorem [3]}, ch.4, § 7) the Hermite-Fejer interpolating
polynomials, constructed by the nodes, consisting of zeros of the Chebyshev
polynomials of the first kind tend to any continuous on [—1;1] function f.

The polynomial wiggle shortcoming is remedied by the introduction of the
interpolation by splines.

To this end usually are used cubic polynomials, different for each pair of
neighboring nodes, regularized such that at each node the resulting function S and

its derivatives up to the order two are continuous. Each cubic polynomial is
determined by 4 constants, the number of intervals is n, so the problem totally

concerns 4N parameters. At each inner node 4 conditions are imposed and 2

additional conditions are imposed at the first and the last nodes, so we get 4n—2
conditions. Two constants remain free and may be chosen arbitrary, depending on

the nature of the spline ("natural- S” (X, ) = S"(x,) =0", "clamped-
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S'(%)=f"(%),S"(x,)= f'(x,)", "not-a-knot"-

S"(% —0)=S"(x+0),5"(x,,—0)=S"(X,, +0) splines). All these
conditions lead to a diagonally dominated tridiagonal system of linear equations,
which is uniquely solvable. In practice the spline is found as the solution of that

system. We need more complicated and indirect construction. Further we will
consider only natural splines.

L

Fig. 4. Basis splines

First we find so called basis splines {Sk} that are the solutions of the problem

Sy (xm) = 0,,, and afterwards the spline is reconstructed by the equality
S(X)=2_ Y8 (¥).
k=0

Evidently Zn:xf‘sk (x) =x",m=0,1.
k=1

23
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Fig.5. Interpolation by a spline of f (t) =

The smoothing idea is implemented in the Bernstein polynomials. The general case
of arbitrary interval [a;b] is reduced to [0;1] and set of weights (Bemstein basis

polynomials) b, (t) = C:ftk (1—t)n7k te [0;1] are introduced. Note that the
maximumof b, is attained at the point %, which will serve as equidistant knots.
For any continuous on [0;1] function T the sequence of Bernstein polynomials
B, (1.0-3 (% .0
o \n

converges uniformly on [0;1] to f . Note that

k n—-k
osbk(t)gcnk(ﬁj (”_‘kj <1k=12--n-1.
n n

One has ([2], 6.2.4-6.2.6)

b, (t)=1 @
k=0

lZn:kbk (t)=t, (3)

Nio

13 t n-1

23 () =L+ 1, 4
n2§ (1) 0 n @
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Fig. 6. Bernstein basis polynomials.

Bohman-Korovkin Theorem [3]. Let L, (n > 1) be a sequence of positive linear

operators acting in the space of continuous functions C ([a, b]) f
||Lnf — f||oo —0 for f(x)=1xand x*, then ||Iﬁ1f — f||w —0 forall
fe C([a, b])

Formula (4) shows that the approximation by the Bernstein polynomials can not be

faster than 1/ n. Real situation is even worse. In fact, one can show that in order to

have a maximum error smaller than 0.01 one needs at least a degree of 1.6:10".

n
Let [a; b] be any segment of the real axis and {ek (t)}kfo be a set of continuous

linearly independent functions defined on [a;b].

Definition 1. The set {ek (t)}:=o forms a partition of unity if Zn:ek (t)=1.

k=0

Remark. Usually in the definition of the partition of unity {ek (t)}: o the following

condition 0 <e, (t) <1, Vvt e[0;1] is imposed.

Actual definition does not exclude the possibility that some functions may ad mit
negative values also, as well values, greater than 1 may occur.

Considered above Lagrange fundamental polynomials, Hermit-Fejer basis
polynomials, basis splines and the Bezier basis polynomials forma partition of
unity.
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Definition 2. Let {tk }k:O C [a; b] be a set of pairwise different points and

{ek (t)}:—o - set of functions, defined on [a; b] . We say that they are biorthogonal
if

e (tn) =S k.m=01---,n. (5)
All mentioned above partitions of unity, except the Bezier basis polynomials are
biorthogonal with corresponding set of knots.

Note that the biorthogonality condition (5) forces the fitting curve to pass
by the interpolation nodes, i.e. in this case one gets the interpolation polynomial.

Definition 3. We say that the set {ek (t)}:fo reproduces the function f if

f()=21 (t)e (1),

n-1
The Lagrange interpolation formula reproduces monomials {tk}o . Formulas (2)-

(4) mean that the approximation by the Bernstein polynomials as well (natural)

splines reproduce the functions 1, t and do not reproduce t*. The Hermite-Fejer

basic polynomials reproduce the constants.
In order to keep data fitting curve in the "narrowest"” possible vicinity of data set

M, it is natural to seek a partition (if this is possible) such that the corresponding

Lagrange fundamental polynomials have "smallest" collective deviation from OX —
axis. More precisely, consider the set of points {xk } and corresponding Lagrange

fundamental polynomials {Ik (t)}:_l. Denote by K :C(a;b) —C(a;b) the
projection operator putting in correspondence to any function f the polynomial

(Kf)(x)= Zn: f (%, I, (x). Denote the Lebesgue constants (the normof the
k=1

operator K) by
A, = sup >[I (x)|

xelain] 3

Let B be the set ofall polynomials with the degree not exceeding n and

e,(f)=inf|f-p].

peT

Itis known that || f —Kf||<(1+A,)e, (f).
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_ _ Inn
For any choice of points {xk} onehas A, ZE.

The "almost" optimal value of A | is attained (for the segment [—1;1] ) when the

nodes coincide with the "expanded Chebyshev nodes" (roots of the Chebyshev
polynomials of the first kind, scaled such that X, =—1 and X  =1). The normof

2 1
this operator is equal [I] to A, =—Inn+1-6,,0<0, < 7
T

More versatile tool, permitting handling multi-valued functions and treating
arbitrary knots is supplied [4] by the Bezier construction. The Bezier curves are
defined by parametric equation as the convexlinear combination of the points M

o] ko

hence the Bezier curve lies in the convexhullof M . Asonly w, at t =0 and w,
at t =1 are equal to 1 the Bezier curve, in contrast with the Lagrange polynomial,
passes by the first and the last nodes (X,; Y, ) and (X,; Y, )-

We propose the following general formula. The fitting curve is defined by
parametric equation

x(t)=knzoxkek (t),
v()=2y.e, (1)

Note that if the set {ek (t)}:io reproduces the linear function then formula (6)

(6)

includes as particular case interpolation formulas. The Bezier curves correspond to
n

the choice of Bernstein basis polynomials as the set {ek (t)}k—o .

7(2k-1)

2n
The Lagrange fundamental polynomials defined by formula (1) are

Example. Let a=-1,b=1t =—cos k=1---,n.

T (t
I (t) = (—1)k n(nLSintk, where T is the Chebyshev polynomials of the

t—t,)
first kind.
Below the MatLab code of corresponding plot is appended.
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------ IntPal

—f

Fig.7. Function f (t) = and the interpolating polynomial

1+t2

function ABInter(a,b)

n=length(a);

p=linspace(pi/2/n,pi-pi/2/n,n);

m=max(-cos(p));

r=-cos(p)/m;

syms t

for k=1:n
f=prod(t-r(1:k-1))*prod(t-r(k+1:n));
g=prod(r(k)-r(1:k-1))*prod(r(k)-r(k+1:n));
I(k)=f/g;

end

L=dot(a,l);

M=dot(b,l);

s=linspace(-1,1);

x=subs(Lt,s);

IntPolCh=subs(M,t,s);

plot(x,IntPolCh,'-.r'/ Linewidth',1.5)

The next plot shows the difference between the Bezier curve and the fitting curve
constructed by the formula (6). Input data is generated by mouse clicks.

function Lintsym(n)
set(axes,’XIim',[0,1],"YLim",[0,1])
g_fig=gcf;

set(g_fig,'Position’,[10 10,700 680]);
hold on
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h=text(.35,1.05,'Choose 1-st control point','Fontsize',14);
a=zeros(1,n);b=zeros(1,n);
for k=1:n
[a(k) b(K)]=ginput(1);
plot(a(k),b(k), Color','k'/Marker',*")
delete(h)
if k==1
h=text(.35,1.05,'Choose 2-nd control point','Fontsize',14);
elseif  k==2
h=text(.35,1.05,'Choose 3-rd control point','Fontsize',14);
elseif k<n
h=text(.35,1.05,['Choose ',num2str(k+1),-th control point],'Fontsize',14);
else
h=text(.2,1.05,'Interpolation curve and the control polygon','Fontsize',14);
end
end
plot(a,b,'k)
hold on
syms t
n=length(a);
p=linspace(pi/2/n,pi-pi/2/n,n);
m=max(-cos(p));
r=-cos(p)/m;
syms t
for k=1:n
f=prod(t-r(1:k-1))*prod(t-r(k+1:n));
g=prod(r(k)-r(1:k-1))*prod(r(k)-r(k+1:n));
I(k)=flg;
end
L=dot(a,l);
M=dot(b,l);
s=linspace(-1,1);
x=subs(L,t,s);
FitC=subs(M.t,s);
plot(x FitC,"-.r','Linewidth',1.5)
for k=1:n
c(k)=nchoosek(n-1,k-1)*t"(k-1)*(1-t)*(n-k);
end
u=c*a’;
v=c*Db";
x=subs(u,t,linspace(0,1));
Bez=subs(v,t,linspace(0,1));
plot(x,Bez 'g--",'LineWidth',2)
axis ‘equal’
hold on
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plot(a,b)
legend('FitC','Bez")

Fig.8. Interpolation curve, Bezier curve and the control polygon
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Abstract : While teaching “Solutions of Quadratics” I was emphasising the idea
that, in general, the solutions of equations such as ax® + bx + ¢ = 0 are obviously
the points where the graph of y = ax? + bx + ¢ crosses the x axis. | started to be
troubled by the special cases of parabolae that do not even cross the x axis. We say
that these equations have “complexsolutions” but physically, where are these
solutions? With a little bit of lateral thinking, | realised that we can physically find
the actual positions of the complex solutions of any polynomial equation and indeed
many other common functions! The theory also shows clearly and pictorially, why
the complex solutions of equations with real coefficients occur in conjugate pairs.

INTRODUCTION

This is the basic graph of y = x? and if we

only use real values of x we only obtain \ I
positive values of y. Fig 1 \ I
Xx=x1 wegety=1

X=x2 wegety=4
X=x3 wegety=29

However, if we allow values of x such as:
X=%i wegety=-1
X=%2i wegety=-4
Xx=+3i wegety=-9

Fig 1
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The insight, is to allowa complex x PLANE
but with just a real y AXIS.

This produces a sort of “phantom” parabola
underneath the basic parabola and at right
angles to it.

I have discovered that nearly ALL curves have
these extra “phantom” parts and more
importantly, this has an intriguing connection
with the Fundamental Theorem of Algebra.

/ Real x axis

Imaginary X axis
Fig 2

“PHANTOM GRAPHS”.
Basically, the Fundamental Theoremof Algebra states that polynomial equations of
the form: ax" +bx" ' +¢cx" % + .. px®+gx+r=0 willhave n solutions.

(where n is a positive integer)

This is often interpreted as:

“The solutions of an equation f(x) = 0 are where the graph of y = f(x) crosses the x
axis”

but this only finds the solutions which are REA L numbers.

Y
Consider the equation X2 — 4x +3 =0

The graph of y = x? — 4x + 3 is as shown in Fig 3

The graph crosses the x axis at x = 1 and :
x = 3 s0 the solutions are x =1 and 3

In this case, the phantom hanging below %
had no part to play in this logic.

L L

Fig 3

32



CCME ..o 2016, No.1

However, consider the equation X’ — 4x + 4 =0 .
The graph of y = x? — 4x + 4 is as shown in Fig 4.
In this case, the top half of the parabola crosses
the x axis at x =2 AND the bottom half of the
parabola (the phantom) also crosses the x axis — e
at x = 2. (a double solution)

The graph goes through the point (2, 0) twice. =

P

/ 1

Fig 4

Of course, the most interesting case is when the basic top half of the parabola would
not normally cross the x AXIS at all but its phantom would cross the complex x
PLANE!

Consider the equation x* — 4x + 5 =0

The graph of y = x* — 4x + 5 is as shown in Fig 5.

The phantom crosses the x planeat x=2 +i and x =2 —i as shown in Fig 5and
these are the complex solutions of the equation.

We can now re-state the Fundamental Theorem of Algebra as:
“The solutions of an equation f(x) = 0, whether they are real or complex, are where
the graph of y = f(x) crosses the COMPLEX x PLANE”.

Clearly, we can see that any parabola of the form: y = ax® + bx + ¢ (with its

phantom) will cross any horizontal plane (which represents any real y value) exactly
two times. Fig 6.
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Fig .6

In my website www.phantomgraphs.weebly.com you will find detailed working to
show HOW CUBIC functions of the form: y = ax® + bx?+ cx + d each have 2

phantoms emanating fromtheir maximum and minimum points. See Fig 7.

Fig.7

We know that any Cubic equation of the form: ax® + bx® + cx + d = 0 will have 3
solutions.Sometimes we have 3 REAL solutions as for the intersections with the
middle Plane B in Fig 7 and sometimes we have 1 real solution and 2 complex
solutions as on Planes A and C. Fig 7.

This is a typical QUARTIC graph. Fig 8 showing 1 maximum and 2 minimum
points.
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i
Fig 8

This is the same Quartic graph with its 3 phantoms emanating fromeach turning
point. Fig 9.

Fig.9
The intersection points with the 4 planes A, B, C and D with the graph, are marked.
Plane A shows 2 real solutions on the basic RED curve and 2 imaginary solutions on
the PURPLE phantom.

Plane B shows 4 real solutions on the basic RED curve.

Plane C shows 2 double real solutions which lie on the basic red curve and the
GREEN phantoms.

Plane D shows 4 imaginary solutions on the two GREEN phantoms. (2 sets of
conjugate roots)
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Clearly a QUARTIC curve will pass through ANY horizontal plane 4 times.

In my website www. phantomgraphs.weebly.com | hawe found that all sorts of
graphs, not just polynomials, have some amazing and surprising PHANTOMS.

Examples arey = Xzi .y =cos(x),y =e*, y? =x(x — 3)’> and many more.

-1

One particularly lovely surprise was the hyperbola y? = x* + 25

Fig 10

Fig 10

There are clearly NO real y values in the interval — 5 <y <5 .So | decided to
calculate complex x values fory values such as y = 3 substituting in  x? + 25 = y?

we obtain x2+25=9
X2 = -16
SO X =*4j
Similarly, ify =4, x = + 3i

and if y=0, x= %5i

These of course are points on a CIRCLE of radius 5 units and this phantom circle
joins the two halves of the hyperbola! See Fig 11.
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Fig 11

When | first worked on phantom graphs I used to calculate the complex points as
above and then | made Perspex models to demonstrate the graphs clearly in 3
dimensions. In order to draw the graphs in Autograph | had to work out the actual
equations of the phantoms.

I will demonstrate the method for the hyperbola shown above.

Firstly we have to allow complex x values so that
when x values appear in the equation we need to replace them with (x + iz)

The above equation becomes y* = (x + iz)> + 25 Equation 1
Expanding and rearranging: y? = (x* — 2% + 25) + (2x2)i

The important idea now is that phantom graphs can have complex x values BUT the
y values must only be REA L numbers.

This means the imaginary part of y must be zero.

Thatis 2xz=0sox=00rz=0

If z = 0 then Equation 1 simply becomes y? = x? + 25 which is the original
hyperbola.

If x =0 then Equation 1 becomes y? = (iz)? + 25 that isy® = — 2> + 25 or in its
more familiar formy? +z% = 25 which is the phantom circle joining the two halves
of the hyperbola!

By far the most challenging complexalgebra  Fig 12

was needed in finding the equations of the
phantoms for the function y = 2x4 . seeFig 12
x°-1
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Fig 12
We can see that there are no real values of y in the interval 0 <y <4

Interestingly, if we consider a general y value such as y =c we get x: . =C

x° -1
which produces a typical quadratic equation x* — cx? + ¢ = 0 which of course has 4
solutions.

If we drawy =5o0n Fig 12 it crosses 4 times but if we draw y = — 2 it only crosses
twice.

But when we consider the graph with its Phantoms, we see that any horizontal
plane y =c crosses the graph 4 times which further verifies the truth of the
Fundamental Theorem of Algebra.

Incidentally, the equation of the bottompurple phantomis: y =1-2*—_1 .
2
©+1
and the equation of the top blue phantomis:y =x*-z2+1 + x>-72-1 )
(X2 - 22 —1)? +4x°2?
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Fig 13

The Intriguing Function y =x*

When we plot this graph using Autograph
we obtain the red graph in Fig 14.

Fig 14

39



CCME ..o 2016, No.1

Ifx = — 1 we can workouty = (- 1)~ = -1 so we can also plot the point (- 1, — 1)
Similarly if x =—2 theny = (=2)"% =+0.25 and if x = -3 then y = (-3)~% =-0.037

These isolated points seemed strange so | decided to find more points using a
graphics calculator and | realised that complex numbers appear!
Forexample: If x=—-0.3,y = (-0.3)7%°=0.84 — 1.16i
If x=-0.9,y=(-0.9)"%=_1.05-0.34i
If x==15,y=(-15)""=0 +0.54i
This graph is different from the types of phantom graphs previously considered
because they have only REAL y values but complex x values are allowed.
That is, a real y axis but a complex x plane. In this case, we have only REAL x
values but complex y values are produced. That is, a real x axis but a complexy
plane. I calculated a lot such points and the very surprising result was this delightful

SPIRAL! Fig 15

VA 7 1] 2\ ™
‘ 7 | B N J
1L/ ‘ 5 =2 - \'T'\ .
\V/ 771 A NG
e
SEAVELENN
T

The curve spirals around the x axis.

I will finish off with views of the SPIRAL from two different angles.
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CONCLUSION : It is an interesting concept that graphs, even as simple as y = x?,
which were previously assumed to exist only in the “X, y plane” can be shown to
have a 3dimensional aspect if we include only those complex x values which still
produce REALY values.This concept makes The Fundamental Theorem of Algebra
far more meaningful in the form: “The solutions of an equation f(x) = 0, whether
they are real or complex, are where the graph of y = f(x) crosses the COMPLEX x
PLANE”.

Note: All the graphs have REAL y values and we only use the complex x values
which produce real y values. If any complexy values were considered as well as
complex x values, the graphs would need 4 dimensions.

REFERENCES :

These ideas in this paper are completely my own original work.

I encourage readers to see a full representation of my work in my website:
www.phantomgraphs.weebly,com
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my models into graphs in the Autograph system.
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Abstract : The one —to-one correspondence of the geometrical inversion, inverts
the Euclidean plane to Ideal plane which contains all the points of the first except
one (the center of inversion) plus one point at infinity. The inverse of Euclidean
straight lines in Ideal plane, is a systemof circles passing fromthe center of
inversion, which comp lete the axioms of Euclid. So these circles are the Ideal
straight lines of the Ideal plane. Now the inversion becomes an isomorphism and
the geometry of the two spaces are identical except for superficial differences in
terminology and notation.

Contents

1. The isomorphism

2. Inversion : the transformation of the plane to itself

3. The axioms of Euclid’s straight line

4. The inversion as an isomorphism

5. Ideal geometry is imaginary but mathematically consistent
6. Comment

1. The isomor phism

In mathematics, we study the properties of postulate sets (independence,
completeness, categoricalness, complete independence etc). That was first brought
into prominence by Hilbert’s “Grundlagen der Geometry”. There, we meet the
concept of isomor phism in it’s general expression:

A postulate set P is said to be categorical if any two interpretations of P are
isomorphic.

Two interpretations Iand I’ of a postulate set P are isomorphic ifone cansetup a

one-to-one correspondence between the elements of I and those of I’ in such a way
as “to be preserved by the relations and the operation of P. It follows that if two
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interpretations I and I’ of a postulate set are isomorphic , then any true (false)
proposition p in interpretation I becomes a true (false) proposition p’ in
interpretation I’ when we replace the elements e, the relations r and the operations

o on the elements in p, by theircorresponding e¢” ;r’, ando’. (H. Eves) Two
isomorphic interpretations of a postulate set P are , except for superficial differences
in terminology and notation, identical; two isomorphic groups Gand G’ (they are
the interpretations Iand I’ of the postulate set of groups) cannot be distinguished
fromthe view of the theory of groups. An isomorphism can be looked as a renaming
of the elements of G in elements of G’ .

Anecdote: a mathematician was asked if he believes in God. Answer: Yes, via an
isomorphism

Removing our interest in the area of geometry, then all the above are translated in
what is known from the theory of surfaces: two surfaces E; and E; are called

isomor phic if it is possible to define a one-to-one correspondence of all the points
of E;, on the points of E; so that each "straight line" of E; corresponds in a
"straight line " on E,. Then the geometries of the two surfaces are identical: each
proposition in one (geometry E;) applies to another (the geometry of E,). In this
result, there are the bases of the Euclidean models of the non-Euclidean geometries,
that the Ideal geometry of this article, is the first trial.

In the sequel, we shall set up a one-to-one correspondence between the points of the
Euclidean plane into itself, proving that this correspondence is an isomorphism.

2. Inversion : the transformation of the plane to itself
Let ITa fixed circle of center O and radius r , and let P be any point in the plane of
I1. Then the point P’ on the ray OP such that OP.OP’= is called the inwerse of P
with respect to circle IT. We add to the plane a single ideal point at infinity. If P=0,
then P’ is taken as this ideal point. Circle ITis called the circle of inversion , point O
the centre of inversion , and r? the power of inversion. There is set up a one-to-one
correspondence between the points of the plane of IT; to every point there is a
corresponding point , the points of the curve C will invert into the points of a curve
C’ , called the inverse of C. We can prove the following theorems concerning this
transformation of inversion
Th.1. if P’ is the inverse of P , then P is the inverse of P’
Th. 2. A point inside the circle of inversion inverts into a point outside the circle of
inversion; a point outside the circle of inversion inverts into a point inside of the
circle of inversion; a point on the circle of inversion inverts into itself

Th.3.the necessary and sufficient condition that

Iy two shapes are inverse, is that any two pairs of
corresponding points not collinear, are
concyclic.

Consider the points A, B and the inverse A",
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B> for inversion (O, r*)*. (Fig. 1) is then OA.OA = OB.OB = r? so the four points as
long as they are not collinear, are con-cyclic. Conversely, it is easily demonstrated
that two shapes, between which there is a correspondence such that any two pairs of
corresponding points to be con-cyclic, then the shapes are homologous to an
inversion.

Th.4. a straight line through the center of inversion inverts into itself
Th.5 a circle orthogonal to the circle of inversion inverts into itself
Th.6. A straight line that does not pass through the center of inversion, inverts into a
circle that does not pass through the center of inversion.
Th. 7. the inverse of a circle that does not pass through the center of inversion, is a
circle that does not pass through the circle of inversion, and homothetic to this.
Th.8. any circle through a pair of inverse points P and P’ cuts the circle of
inversion orthogonally.

Th.9. The inverse of a circle that pass fromthe center of inversion O, is a

straight line parallel to the tangent of the circle at O. (fig.5)

Th. 10. Two intersecting circles C"and C”* orthogonal to the same circle C, are
intersecting at points P and P’ which are inverse relative to the circle C. (Fig. 2)

Th.11. a given circle may be inverted into

itself by the use of any given exterior point

as center of inversion.

Th.12.in an inversion, the angle between

two intersecting curves is equal to the

corresponding angle between the two

inverse curves. A transformation that

preserves angles between curves is called
fig. 2 conformal transformation. So, inversion is

a conformal transformation.

Th.13. the distance of the inverse points.

Without harming the generality, we consider the radius of inversion r=1

In Fig. 3

is OA.OA" = OB.OB’ = 1. The triangles OAB, OA'B’ are similar.
. therefore
AB"/AB=0A"/OB=

fig. 3

! The circle (O,r) is not in the figure.
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A’B’=AB.OA /OB=AB.0OA 'OA/OB.OA=AB/OA.OB
finally
A'B'=AB/OAOB ........... (N

If points A, B, A’, B’ are collinear the same formula applies to the distance of A’, B’
More details and additional properties for the inversion we can find in the yeopetpio
Kavéldov and in the geometry of the Jesuits.

The system of circles passing through a fixed Point..
We shall examine now the representation of ordinary plane geometry by the
geometry of a systemof circles through a fixed point O, with the results of the
above transformation of the plane on itself (the inversion with center O and radius
1). It is convenient to speak for the plane of the straight lines and the plane of circles
,as two separate planes (the second as Ideal plane). We have seen that to every
straight line in the plane of the straight lines , there corresponds a circle in the plane
of circles. We shall call these circles ldeal straight lines. The Ideal points will be
the same as ordinary points , except that the point O will be excluded fromthe
domain of the Ideal points, plus a point at infinity. As angle of ideal lines, we define
the angle of the archetype straight lines through the inversion, as inversion preserves
angles between two inverse curves.

If we prove that the correspondence of inversion is an isomorphism of the
Euclidean plane to the Ideal plane, then the geometries of the two planes will be
identical. The properties of the set of circles could be established fromthe
knowledge of the geometry of the straight lines, and every proposition concerning
points and straight lines in the one geometry could at once be interpreted as a
proposition concerning points and circles in the other.

3. The axioms of Euclid’s straight line

The axioms of Euclid are:

1. There is exactly one straight line through two distinct points.

2. Every straight line can be extended indefinitely and is open from both ends, has
infinite length. For any two points A, B there is always another Cto B is "between"

A and C. The meaning of " between-ness" , is basic for Euclidean geometry.

3. You can draw a circle with any center and radius. This axiom seems to be
unrelated to the points and straight lines. But beware if the Euclidean definition of
the circle "which is the line where all points equidistant from one another," we will
see that this axiom ensures something for distance. How do we know that the
distance of the ends of diabetes remains the same when rotated; It ensures that the
"distance" in the plane (space), as if set, should ensure the unchanged length for a
segment that is moved from one place to another.

4. All right angles are equal. Again we need to know the proper Euclidean definition
to interpret the axiom: "When two intersecting lines form the successive angles
equal then each of themis a right angle. So the fourth axiom is equivalent to the case
that the straight lines have not zig-zag, "break”, angular points. Let us remember the
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greatest circle of the sphere .

5. The most famous axiom in the history of science: from a point outside a straight
one parallel is conducted to this. Parallel lines are in the same level that as if
extrapolated do not intersect.

The question that comes here is: is Euclidean straight of our daily experience, the
only line that satisfies the above axioms? though the world around us infuses us with
a strong intuition about what is straight line, can the axiomatic construction of
Euclid be applied to another line after appropriate axio matic assumptions about
space? If so, we will begin to falter in the absolute of Euclidean space. This thought,
ie the search of another line that the axioms of Euclid are valid, and the
investigations of the consequences of this geometric phenomenon leads us to study
the isomorphism mentioned above. This isomorphism is a first example of
understanding the relativity of geometry and is reported in the book of Bonola, “Non
Euclidean Geometry”.

4. The inversion as an isomor phism
The firstaxiom
Any two different Ideal points A,B
1 determine the Ideal line A, B (fig.4), just as in
Euclidean geometry, as three points (O,A,B) define a
unique circle. So the first axiom of Euclid is valid in
Ideal plane.

rz

fiig.4

Definition of ideal distance
We define as ideal distance ofthe ideal points A’, B’ (fig.5, theorem 9) the
distance AB ofthe archetypes points of A’, B’ on the Euclidean line-archetype
through the inversion.
But as fromtheorem 13 we have
AB=A"B’/OA’.OB’ ........... (1)so

«distance A'B’»=A'B/OA".OB". ....(2)

fig.5

We must note here that the length A’B/OA ".OB’. is not the Euclidean length of
A’ B’ , but we agree to call it length, it is the ideal length, the “length”.
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So the equal lengths in Euclidean plane remain equal in ideal plane!

The first condition of the distance is that

“distance”’AB="distance” AG+’distance”GB when G is between A and B that is
easy to show.

The idea of “between-ness” is established fromthe fact that O is excepted from
the ideal points of the ideal plane. If in figure 4 we had not except the point O
then the points I'; and T, should be between A and B. So we insure the axioms
of order that are related with the second axiomof Euclid.

The 2° and the 4° axioms of Euclidin ldeal plane .

The definition of the ideal distance has in figure 6 this paradox: if we take on the
ideal line the segment KA as unity of distances, then this unity becomes gradually
smaller and smaller as we proceed along the line towards pole O, but the
“distances” will remain “equals”. So in figure 6 we should require infinite number
of unities to reach at O, so we have the second axiom of Euclid: the “ideal length
of'the ideal line” is infinite, and there is not a last point on it, it is an open line.

For the fourth axiom we say: as in inversion the angles are preserved (conformal),
the axiom for the right angles in Euclidean plane will also hold for the “right
angles” in the Ideal plane” so the fourth Euclid’s axiom may appear in the geometry
of the Ideal Points and Lines.

For the 5° axiom.

fig 6

Ideal parallel lines

If we have an Ideal line BI" and an Ideal point A not on the line, we define the
“parallel ldeal line” to BI', the circle which touches at O the circle coinciding with
the given line, and also passes through the given point A. So the two Ideal lines
touch each other at O, which is not an Ideal point, will be Ideal parallel lines and
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the second (the circle is unique) will passes through A. So the fifth axiom of
Euclid holds on the Ideal straight lines.

For the 3° axiom

Theorem 14 the Ideal length of an Ideal segment is unaltered by inversion to
any circle of the system.

Let OD be any circle of the systemand let C its centre. Then inversion changes
an Ideal line into an Ideal line. Let the Ideal segment AB inverts into the Ideal
segment A’B’. We can prove (formula 1) that ABand A’B’ have the same Ideal
length. (Bonola p.245)

Ideal dis placements.

In the 3° axiom in Euclid’s plane, we have that the length of an linear segment
must be unaltered as the segment will be displaced from one place of the plane to
the other. So firstly we must make clean the concept of plane displace ment.

We know that every plane displacement is a translation or a revolution or both.
(yewpetpio Kavvélov) But every translation or revolution can be resolved in
infinite ways in two axial reflections, so the plane displacement will be studied
fromthe concept of axial reflections. What is the Ideal reflection in an Ideal line?
Theorem 15 : the inversion about any circle of the system in Ideal plane is
equivalent to reflection of the Ideal points and lines in the Ideal line which
coincides with the circle of inversion, and is orthogonal to the reflected Ideal

line.
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In figure 9, C is the centre of a circle
(y) of the systemand A , A’ inverse
points with regard to this circle. Then
the circle OAA’ is orthogonal to the
circle (y) of inversion (theorem 8).
This is the axis of the reflection we
are going to prove. In other words A
and A’ are on the Ideal line
perpendicular to the circle of
inversion (0=90). Also the Ideal line
fig. @ AA’ is bisected by that circle in M ,
since the Ideal segment AM, inverts
into the segment A’M , and Ideal lengths are unaltered by such inversion.(th.14)
Such an inversion is, therefore the same as reflexion, and translation will occur
when the circle of inversion (y) is orthogonal to the given Ideal line.
The Ideal displacements are the results of Ideal Reflections.
So finally we have proved that any Ideal displacement of an Ideal line segment,
does not alter it’s Ideal length, so in Ideal geometry holds the third axiom of
Euclid.

5. Ideal geometry is imaginary but mathematically consistent .

Finally we set up a one-to-one correspondence between the points of the
Euclidean plane into itself, the inversion, having a new space of two dimensions,
the Ideal plane. There the images of the Euclidean straight lines were a system of
circles but they completed the axioms of Euclid. Then the two spaces are
isomorphic. So it is possible to “translate” every proposition in the ordinary
plane geometry into a corresponding proposition in this Ideal geo metry. We have
only to use the words Ideal points, Ideal lines, Ideal parallels etc. in the ordinary
points, lines, parallels. But we can invent relations which were unknown in the
systems of circles, as we see through the figure 10.

In figure 10 holds

In the (Ideal) triangle ABC the sumof the angles is .

If ABC is rectangular and M the middle of BC then AM/OA.OM=% (BC/OB.OC)

Yet (A BY/OA%0B?y+HA C*/OA?0C?) =BC*/OB*0C?.
(Ideal Pythagorean theorem) etc.

fig. 10
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6. Comment

The interpretation of the Ideal plane is not an interpretation of the world round us, as
it is rejected by the observations, till now. The same happened with the Riemannian
geometry of the curved space, whose curvature we never “saw”, but we had to
accept it as a reality if we want to interpret the reality of the conclusions of general
relativity.

After the isomorphismthrough the inversion, the Euclidean straight line and
geometry, loses it’s absolute character supported from experience, and we have the
beginning of the great revolution in mathe matics, that of non-Euclidean geometries.
The truth of the Ideal plane is an hypothetical truth, an Aristotelian form, in the
realm of potential reality. The two isomorphic spaces changed the perspective of
mathe matics, separated them fromthe accepted set of initial statements (material
axiomatics) which were linked with the intuition, and led to a deeper study and
refinement of the axiomatic procedure (formal axiomatics).

Conclusions

How could the Ideal geo metry be real? the straight line for us should be every
circle in the figure 11. We must imagine we are tiny and every segment ds, looks as
straight line. Also the rays of light, trace out the circles of the system, with the point
O being a black hole. If we lived in such physical conditions our geometry should be
Euclidean.

AN

)

fig 11
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Abstract : The present work revisits the classical Wulff problem restricted to
crystalline integrands, a class of surface energies that gives rise to finitely
faceted crystals. The general proof of the Wulff theorem was given by

J.E. Taylor (1978) by methods of Geometric Measure Theory. This work
follows a simpler and direct way through Minkowski Theory by taking
advantage of the convexproperties of the considered Wulff shapes.

Introduction

This work is a short though sufficiently self-contained incursion into the
WAulff construction and the Wulff theorem for faceted crystals, mathe matic-
cally represented by the class of crystalline integrands.

The aimofthe Wulff Problem is to find a surface whose total surface en-
ergy is minimal for a given fixed volume. This classical problem is also
known as the Equilibrium Shape Problem, and the solution is also called an
equilibrium shape, or simply a crystal. The problem is named after George
Waulff, who invented an algorithmto determine the final shape of a crystal
that grows near equilibrium, based on Josiah Willard Gibbs principle of the
surface Gibbs free energy minimization for the evolution of a crystal droplet.

By convexifying 7, oneinduces a y -metric on the dual space of the solu-

tion space. Since such a class of problems have polyhedral solutions, we
can dismiss the geometric measure versions of Brunn-Minkowski Theorem

* This work was initiated and mostly developed during the Thematic Programon
Variational Problems at the Fields Institute, Toronto, Canada (Fall 2014). The author
is deeply grateful to the Fields Institute for the support received and its hospitality.
The author would like to thank Almut Burchard, Jean Ellen Taylor, Robert McCann
and all the supporters of the Maths, Metallurgy & Crystals project (please refer to
the complete list at http://goo.gl/GTgllY)
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from Federer and Wulff Theoremby applying the Legendre transformto the
canonical version of the Wulff construction and build our way to the Convex
Geometry version of Brunn-Minkowski Theoremthrough geometric inequal-
ities and convexity. We show equivalences between constructions and some
relations between the crystalline integrand and the area integrand version

of the problem - isoperimetry and minimal surfaces.

l. The Crystalline Variational Problem

The Wulff shape arises in surface energy minimization problems when the energy

function @ s anisotropic. For isotropic energies and a given amount of mass, the
equilibrium shape is well knows: a ball, formally denoted by the n-dimensional

sphere S 1 . This shape encloses the prescribed mass whereas minimizing the
surface area of it. This is stated by the classic Isoperimetric Inequality.

For anisotropic energies, the analogous minimizer is the Wulff shape. Such
energies have been heuristically misrepresented by simple functions that very
often are not well-defined, presenting many singularities and unbounded en-
ergy spots. We avoid this imposture following Taylor's Geo metric Measure
Theory characterization of the energy. In this context, the surface energy,

also called the energy function of the anisotropic problem, is an integrand,

as defined below:

Def.:[integrand] An integrand on Rn+1 is a function that will represent the
surface energy function

O:R™xGy(n+1,n) >[0, + o)
where the Grassmannian Go(n +1, n) is the manifold that parametrizes ev-

ery n-dimensional linear subspace of IR™ ie., all the hyperplanes of the N +1-
dimensional Euclidean space.

An integrand is defined constant coefficient iff

CD(X,ﬂ'):CD(p,n') VX, 7 e R™ | VpeGO(n+1,n).

In this case, @ is a function of its second variable only. An integrand is
unoriented if it independs on the orientation of 77 . We will assume all integrands

are continuous, constant coefficient and positively oriented.

Def.:[Wulff construction] Given an integrand @ , plot it radially by taking
each direction V € S" and calculating @ on the positively oriented plane 77

whose normal vector is V,7Z'={ xeR™ /<X,V> = 0} We will denote 77 by
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V> and vice versa. Plot CD(VL)in V direction: @(VL)V.

Then, foreach V define the half-space H, ﬁ{X eR™ /<X,V>£®(Vl )} .

Take the intersection of all half-spaces. The resulting set ch is the Wulff shape
of M, also called the crystalof @ :

W(I)ﬁﬂHv

veS"

For an isotropic energy, M =constant : the Wulff problem reduces to the
Isoperimetric Inequality and the crystal is an Euclidean ball; that is the case of a
soap bubble.

Obs.: We can extend homogeneously the function D in order to calculate it on
other planes related to non unitary direction vectors by formalizing the explained

abuse of notation defining the dual function @ as follows

@ :S" >[0,+x) , O (V)=D(7)

P

where V _L 7T as defined above, (D*( p) i‘ p‘CD* ‘ p‘ .

Note that since W(D is given by an intersection of half-spaces, then W(D is

convex Also we can assume O EWQD always. The physical meaning of the

origin is the crystal seed for growing a crystal, a tiny monocrystal that in-
duces the orientation of the new crystal.

Def.:[Legendre Transform] Let cfZSnfl—)R+ be a continuous function.
The (first) Legendre transform of f is

* - i 5(9) _
& (V)—<9IK/1>1:0 <(9,V> where ‘(9‘—1

An alternative construction of the Wulff shape is based on the Legendre
transformas in [5]:
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Def.:[Fu's Wulff construction] Let W be the operator over integrands

W (@)(x)=inf )

veS" <7Z'L,V>
where <7ZL,V>> O . Then the crystal of @ is the set enclosed by the radial

plot of W (CD) , plotted as explained before. Also, the orientation of W, is
defined positive.

Proposition: The two given definitions of crystal are equivalent.

Proof: Call Z the operator defined in Fu's construction instead of W

W, cZ,) :Let yeW, i.e.<y,V>SCD*(V) (VveS"). Then

=Ll ) 00

®’(v)

. Since the inequality holds

If \y\<‘ ‘ V>>Othenwehave‘y‘

forarbitrary V,then

D (v
‘y‘S \|£an <y(v>)’ ie. yeZ(D

<‘y‘ v)<0 , then obviously the inequality holds, with y in the same
y

half-space bounded by < > [‘ ‘] (Zy =W,) -

et yeZ, ,i.e.‘y‘S(Z(q)))*[ﬁj, <ﬁ,v>>o.
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Then :

ly|< (v) YweS" o vy Yy =(y,V)<®’(v)
v, v
v

forall VeS" butthen YeH, (WWweS") = yeW, O

1. Pathway through convexity

Itis easy to visualize what kind of Wulff shape one gets when the inter-
section of half-spaces is finite: a polyhedron, except for unbounded and/or
empty intersections. That is the case of anisotropic energies: we say that an

integrand @ is crystalline if its Wulff shape, or crystal ch is a polyhedron.
Now we take advantage of this fact:

Def.:[extreme point] Given a set KcR" ,X € K isextreme if it cannot be

expressed as a convexcombination of any two other points of K .

Def.:[polytope] A polytope P < R" s the convexhull of a finite set:

pzl:{ [ o J pk}:l'

Def.:[polar body] Given a convexset K ,the polarbody of K is the set
K'={xeR"/(x,y)<1 (VyeK)}.

Lemma: A supporting hyperplane H to a bounded convexset K contains
at least one extreme point of K .

Proof: Denote the set of extreme points of K by EK.Since K is convex,

K I[K],so EK cK = [EK]CK.WeaIsohavethat
HNK=H ﬁ@K, S0

the set of extreme points of HNK , EHmK , is the set EHmEK . Now suppose
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the claim is true for every set with dimension <M —1. Then it is also true for

all sets of dimension M, since ifa given non-extreme point in M dimension
could be written as a convexcombination in dimension M —1, then it would
be sufficient to write it in [N dimension putting /1m = 0. But for dimension
1, the claim is trivially true. Therefore it is true for any dimension. O

Theorem 1: A bounded convexset K is the convexhull of its extreme
points.

Proof: Since E, c K = [EK ] K, we only need to prove that
Kc [EK].

Suppose some X € K is not in [EK ] . Then there exists a separating hy-
perplane H that separates strictly X from EK . The parallel supporting

hyperplane of K that is strictly separated from EK by H mustcontaina

point of EK (lemma). Contradiction. O
Corollary: Every polytope is a finite intersection of half-spaces.

Proof: If P is finite, thensois E, . Foreach P eE,, let Ag be the set of
supporting hyperplanes that contains [0 and also contains at least another
extreme pointof P . Then take A'p (e Ap the subset that contains supp. hy-

perplanes intersecting the maximum number of extreme points as possible
(this number is well-defined since the very # P is a majorant). The facets

of P willbe contained on those hyperplanes; for each facet define the half-
space oriented to contain the origin and take the intersection of it. Because
of the theorem, P is contained in this intersection. O

Theorem2: 1f K is convex, then KH =K.

Proof: (K c K**) Let X€ K .Thenforany Yy € K we have <X, y>£1.

**x

But then, since X is arbitrary, it has to be in K
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(KHC K) Let Y € K ™ and suppose Y & K . Then there is a separating
hyperplane H thatseparates Y from K, H = {X /<X,V> 21} ,<X,V> <1
when X € K and <y,v> >1

But if <X,V>Slwhen X e K ,then Ve K and <y,V>£lsince

yeK”.

Contrad iction . O

Theorem 2 reveals a link between Convex Geometry and Functional Analy-
sis: given a polyhedral crystal W, we apply the corollary to define a convex

CDC whose crystal coincides with W so that CDC is the "smallest" enclosing

function for W . For that, we use the theorem 2 by taking the polar of W .
Since @ s a linear operator, we know its behavior everywhere by homo-
geneous extension. By Riesz representation theorem, the crystal W s the
polar of the unit ball CDC =] in the dual norm. That gives us the surface
energy scaled so that the Wulff shape is given in units of surface free energy.

-1
Def.:[Steiner symmetrization] Fora convexbody KcR" and a @€ S" ,

the Steiner symmetrization of K in the direction of 0 is given by

S,(K)={x+16| xeProj . K, 1R}

where ‘l‘ < %‘ Kn {X + R@}‘. Some properties are the fact that

‘Sa ( K )‘ :‘ K‘ 'S, ( K) is convexand the convex Minkowski sum of

symmetrizations equals to the symmetrization of the convex sum of the bodies. The
symmetrization process slices K along 0 , aligning the slices by putting their

midpoints in Ql.
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K
0

W% (K)

Figure 1: Example of Steiner symmetrization of K along the vector QT

A useful classical result is stated below without its proof, which follows di-
rectly fromthe several interesting properties of the Steiner Sy mmetrization
process. A more curious reader might refer to [6], [20] or [21].

Theorem:[Steiner-Schwarz] Given a convexbody K — R" and F a k-
dimensional subspace, then there exists a sequence of symmetrizations Hj such
that the limiting body K _satisfies ‘IZ N{x+F }‘ = ‘K A{x+F }‘ where

Kﬁ {X + F} is a K —dimensional ball centered in X with radius I’(X).

Theorem: [Brunn's Concavity Principle] Given K < IR"a convexbody and
F a k —dimensional subspace of R" , the function T :F* —R" given by

f(x)= [K A {x+Flf

N is concave on its support.

Proof: Apply the former theoremand use that SUP I’(X) =Pr OjFl K,

2
T

@r(x)k. U

f(x)=|Kn{x+F}|=v oI(S"‘l):

f Figure adapted from [24]
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z+F

Figure 2: Application of Steiner-Schwarz to prove Brunn's Concavity

it
Principle, where n =3, k=2

The Brunn-Minkowski inequality is the crucial ingredient for proving the optimality
of the Wulff shape. We conclude this section with a proof based on convexsum of
two convexbodies and the Concavity Principle:

Theorem:[Brunn-Minkowski Inequality] Given non-empty compact subsets
1 1 1
A B of R" |A+Bfn > |An+|B|n

Proof: Take the Steiner symmetrization of A and B to find two convexbodies in
R". Create their convexsum L on IR™ by taking the convexhull of
SQ(A) x0and S, ( B) %1, where 0,1 belong to the additional real axis for

(X,t)e L}.

. L(Ej:S(,(A)+SH(B)_SH(A)+S(,(B)

the convexsum, so that L(t) 2{ xeR"

= . By the concavity

2 2 2

principle applied for F=R"

1
Sy(A)+S,(B)" 1
2 | T2

T
Figure adapted from [24]
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1. The Wulff Theorem

Waulff's 1901 seminal article provided a method to predict crystal shapes after Gibbs'
proposition on the minimization of surface energy; since then, many have worked on
the subject. Nevertheless, it was Taylor ([1]) who proved that the Wulff

construction determines the unique minimizer W, for the integral of @ over the

boundary 8ch . The proof requires some concepts from Geo metric Measure
Theory, which are now introduced:

Def.: [integral current] An integral n-dimensional current S — R"is a
rectifiable oriented hypersurface generalized through GMT so that eventual
anomalous portions are still well-behaved enough to allow integration with

respect to the measure |S| on Rn+l , Which is a function of the Hausdorff

measure H " restricted to the support of S, which can be arbitrarily closely

approximate by a n-d C1 manifold. An interesting property of currents is
that their boundaries also have the essential properties to allow boundary

integration (for more see [3]). In the next theorem P will denote the cur-
rent whose boundary is an integral current. The total surface energy of an

integral current S R™ s given by :

D(S)= j @[ ng (x)] dH"x

xeS

1
We also define for N > O the homothety in R™ H (X)=hX and the inte-

grand @ the isomorphism Wq? = Ly (W(D) following [1].

Theorem:[Wulff] Given an integrand @ , then for every n-dimensional cur-
rent P cR™

D (W, )<D(6P).

up to translations and homotheties, such that their mass coincide, M (P)—

M (W, )

Proof: Let P beacurrent with OP its positively oriented, piecewise C1
boundary. Then
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®(0P) = [@(8P(x))d[aP|x > [supt (W, )(P(x)) d[oP|x
M(P")-M(P)

=lim

h—0

where M (Wq)) =M (P) and M (Wq?):hn+l M (Wq>) and P" is
the positively oriented current given by the Minkowskisum X + Y where

X e supt P and Yy € supt W£ . Then Brunn-Minkowski inequality
implies:

fim M(P")-M(P) _ iy (D)MW )M (W)
h—0 h - h—0 h
:|im(l+hn+l_l) M (W, )= tim M (Wo ) fh‘. (n+1)!

o h o & Ti(n+l-i)!
=lim M(W,).(n+1) =(n+1).M(W,,)

h—0

In particular for P Ech , the above inequalities are equalities. By using the fact

that M (P) e M (W(D), we conclude that (D(@W(D)Sq)(ﬁp) .

Such shape is unique modulo translations and homotheties, and since the mass is
fixed, follows the uniqueness of Wq) . O

V. Conclusion

In this exposition, different fundamental areas of Mathematics were gathered to
structure a simple mathematical basis for the equilibriumshape problem with a
crystalline integrand. A natural generalization of the Wulff construction for non-
equilibrium growth is to replace the energy function for the correspondent potential
that controls the process, the mobility function. Also, through Kinetic PDEs, a
flourishing area of mathematical modeling in the Sciences, it might be of interest to
study the growth and the stability of such shapes.
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