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Abstract: Because most physical systems are inherently nonlinear by nature, 

mathematical modeling of physical systems often leads to nonlinear evolution 

equations. Investigating traveling wave solutions of nonlinear evolution equations 

(NLEEs) plays a significant role in studying such nonlinear physical phenomena. 

This paper discusses the application of the functional variable method for finding  

solitary and periodic wave solutions of the longitudinal wave motion NLEE in a 

nonlinear magneto-electro-elastic (MEE) circular rod. Each of the obtained solutions 
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contains an explicit function of the variables in the considered equations. The 

applied method yielded a powerful mathematical tool for solving these nonlinear 

wave equations without the necessity of a computer algebra system; according the 

widespread view “real mathemat icians don not compute”. However, if the obtained 

exact hyperbolic solutions are executed numerically, then they show an  undesirable 

unknown numerical conditioning problem. This paper contains a warning against it 

and information about how to prevent this outcome.  

 

INTRODUCTION  

Understanding of a wide variety of nonlinear phenomena in different branches of 

physics and other knowledge domains has been achieved by means of exact  

integrable model equations, which solving yields a deeper understanding than those 

models approximately describ ing nature.  Of course, “nearly” integrable systems and 

their evolution can be described by means of perturbation theory; building upon 

wave dynamics. But this paper focuses on constructing exact soliton waves and the 

periodic solutions for nonlinear evolution equations, including their subsequent 

exploitation for numerical purposes.  This study was originated by Korteweg, 

together with PhD candidate, de Vries. Together, they derived, from physics first 

principles, a  nonlinear part ial differential equation, known as the KdV equation.   

Solutions  are best understood by studying waves in shallow waters. The KdV 

equation revealed solitary waves (i.e. waves with permanent shape). This seemingly  

contradicts nature, as a traveling wave commonly dissolves by radiation, as in the 

electromagnetic case. The permanency of shape is due to both a balance of 

dispersion and nonlinear effects. The nonlinear effects derive from wave packets, of 

nearly the same length propagating with their group velocity, while indiv idual 

component waves in the packet move through the packet with their phase velocity. It  

can be generally shown that the energy of a wave disturbance is propagated at the 

group velocity, not at the phase velocity. 

Long-wave components of a general solution travel faster than the shortwave 

components, thus the components disperse. The standard linear theory predicts the 

dispersal of any disturbance other than a purely sinusoidal one. 

Zabusky and Kruskal (both in 1965 at Bell Labs in Murray Hill, New Jersey, USA) 

simulated numerical solutions of the KdV equation [1]. They noticed, using a 

difference analog for the KdV equation [2; p. 233], that colliding solitary waves of 

emerged from collisions with all of their original properties intact. They also noted 

sinusoidal waves evolving into solitary waves with dispersive radiation. Because of 

this particle-like behavior o f the solitary waves, they coined the term “solitons” [3, 
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4].  The name caught on quickly amongst mathematical physicists as the soliton was 

the first “particle” to be discovered with pure mathemat ics. 

Incidentally, in water tank experiments, conducted in 1834, John Scott Russell 

observed that solitary waves could pass through each other and subsequently emerge 

unchanged. As the concept of fundamental particles did not emerge until early in the 

next century, Russel did conceptualize his findings as such. Nowadays, the 

phenomenon is viewed from a more general point of view; recognizing solitons and 

their approximations in many wave phenomena.   

The superconducting state is not the sole exception; there are also topological 

solitons known as vortices and fluxions.  On both microscopic and macroscopic 

levels solitons are discoverable. Taking into account the omniscient inherent 

nonlinearities in the nature of matter and propagation media, appearance of solitons 

can be predicted. This paper provides a solution for the nonlinear equation of motion  

for magnetic excitation and confirms the existence of magnetic solitons. 

Of course, under strict mathematical defin ition, which implies an infinite life-t ime 

and an infin ity of conservation laws, exact solitons cannot exist. The mathematical 

definit ion of solitons, albeit derived from nature by Zabusky and Kruskal, is never 

fully observable as in nature there is not an infinite lifet ime. The observed 'quasi-

solitons' are often so long-lived that they are almost 'true solitons'. This is why 

physicists often generalize the word 'soliton', without full justice to mathematical 

rigor [5]. Physics, Chemistry, and Biology describe processes and phenomena using 

theoretical    Differential Models endowed with empirical parameters and/or 

empirical functions. Exact solutions of those differential equations are preferable for 

researchers as they enable the design of experiments yielding either a positive or 

negative correlation via creating approximating natural conditions, from which  

estimates are derived as to their parameters and/or functions. 

This makes the search for exact solutions of NLEEs very significant. 

The insolvability of model equations, however grounded they empirically are, is 

potentially a severe drawback. This is where the invention of mathematical methods 

is critical as it provides exact solutions to the model equations. As a result, many 

techniques of solving traveling wave equations have been developed over the last 

three decades, such as, the Tanh–Coth function method [6, 7]; the Kudryashov 

method [8]; the Exp -function method [9 - 12]; the homotopy perturbation method 

[13 - 15]; the modified simple equation method [16 - 19];  the (G’/G)-expansion 

method [20 - 24]; the exp-expansion method [25]; the transformed rational function 

method [26]; Ricatti Ansätze [27]; the multip le exp-function method [28, 29]; the 

generalized Hirota bilinear method [30];  and the Frobenius integrable 

decompositions [31]; as well as many others.  Each methods has its distinct pluses 

and minuses.  
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A unified method applicable to all types of NLEEs would be a scientific break-

through for all knowledge domains, including Physics. Until then, improvement of a 

particular method to reveal/predict unknown solutions to existing NLEEs, will have 

to be researched in the various application domains. 

Zerarka et al. [32] in 2010 proposed a functional variable method to solve NLEEs  

arising in mathemat ical physics. This pioneering work spawned studies to refine the 

initial idea [5, 33] 

This paper applies the functional variable method to construct exact solutions for 

nonlinear longitudinal wave motion equations in nonlinear magneto-electro-elastic 

circular rods. We extended the use of the functional variable method by developing 

a novel solution procedure of simplicity, capable of extension to all NLEEs.  

The paper is organized as follows: Section 2, the functional variable method; Section 

3, application of this method to the nonlinear evolution equation mentioned before; 

Section 4, results and discussion; and Section 5 Conclusions. 

 

THE  ALGORITHM  OF  THE  FUNCTIONAL  VARIABLE 

METHOD 

 
Zerarka et al. [32] were the first to propose the functional variable method to solve 

various NLEEs arising in mathemat ical physics and engineering. First, the NLEE is 

written in two independent variables x and t, 

 

      
  0t x t t x x xtF u,u ,u ,u ,u ,u , =                                                                        (1) 

as where the subscript denotes partial derivative, where F  is a polynomial in t)u(x,  

and its partial derivatives and t)u(x, is called a dependent variable or unknown 

function, to be determined. The main steps of this method are as follows [5, 32-34]:

  

 

Step 1. To find the traveling wave solutions of Eq.(1) we introduce the wave 

variable  tω±xk=ξ ,  so that )()( ξu=tx,u , where  0ω  is the 

wave velocity and k the wave number. This, reduces Eq.(1) into the following  

ordinary differential equation (ODE): 

 

        
  0ξ ξ ξ ξ ξ ξX u,u ,u ,u , =                                                  (2) 
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Where X is a polynomial in  ξu  and its derivatives, 
2ξξξ

dξ

ud
=u,

dξ

du
=u

2

, and 

so on. 

 

Step 2. We make a transformat ion in which the unknown function  ξu  is 

considered as a functional variable in the form:    

 

                                                    
 ξu = Y u                                                (3) 

and some successively derivatives of   ξu  are as follows:  

 
'

21

2

'

ξξu = Y Y = Y 

   
' '

2 2 21 1

2 2
ξξξu = Y Y = Y Y  

   
' '

2 2 2 21 1

2 2

'''

ξξξξu = (Y ) Y + Y Y
 
 
 

 

                                                                                    (4) 
 ...  ...  ...  ...  ...  

 

where 
2

'''

du

Yd
=Y,

du

dY
=Y

2

  and so on. 

 

Step 3. We substitute Eq.(3) and Eq.(4) into Eq.(2) to reduce it to the fo llowing  

ODE:  

 

  0' ''Q u,Y,Y ,Y , =                             

                                                                                                (5) 
 

Step 4:  The key idea of Eq.(5) is of special importance because it admits analytical 

solutions for a large class of nonlinear wave equations. After integration, Eq.(5) 

provides an expression of Y, and this, in turn with (3), gives appropriate solutions to 

the original wave equations. In order to illustrate how the method works, we 

examine some examples in the following section, were previously been treated using 

other pre-existing methods.  
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APPLICATION  OF  THE FUNCTIONAL  VARIABLE METHOD 

Nowadays in solid mechanics, nonlinear elastic effects on solitary waves are 

receiving considerable attention. On the basis of classical linear theory, Zhang and 

Liu [35] solved the nonlinear equations for a thin elastic rod and derived the 

longitudinal, torsional and flexural waves using Hamilton's variation principle. Liu  

and Zhang [36] solved the nonlinear wave equation in an elastic rod by the Jacobi 

elliptic function expansion method.  

With the increasing usage of magneto-electro-elastic (MEE) structures in various 

engineering fields, such as actuators, sensors, etc., wave propagation in MEE media 

has also attracted more researchers. Using the propagator matrix and state-vector 

approach, Chen et al. [37] presented an analytical treatment for the propagation of 

harmonic waves in MEE mult ilayered p lates.  

Based on the constitutive relation for t ransversely isotropic piezoelectric and 

piezomagnetic materials, combined with the differential equations of motion, Xue et 

al. [38] derived a longitudinal wave motion equation in a Magneto-electro-elastic 

circular rod of the form, 

 

       0
2

2
2

02

0 =Nu+u
c

ucu

zz

ttzztt 







  

                                                                                                                                 (6) 

 

where c0 is the linear longitudinal wave velocity for a MEE circular rod and N is the 

dispersion parameter, both depending on the material properties as well as the 

geometry of the rod. Eq.(6) is a nonlinear wave equation with dispersion caused by 

the transverse Poisson’s effect.  

 

The traveling wave transformation is: 

 ( ) ( )u x, t = u ξ ,                ξ = k z ω t     

                                                                                                                     (7) 
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Eq.(7) reduces Eq.(6) into the following ODEs: 

 0
2

22
2

022

0

222 =uωNk+u
c

kuckuωk

ξξ

ξξ

2

ξξξξ 







   

 

                     (8) 

By integrating Eq.(8) twice with respect to ξ and neglecting the integration constant, 

we obtain: 

 

2

2

2

0

2

2

0

2

2
u

ωNk

c
u

ωNk

cω
=u

22ξξ 


. 

 

                                                                (9) 

 

Following Eq.(4), it is easy to deduce from Eq.(9) an expression for the function 

Y(u) : 

                 

     2

2

2

0

2

2

0

2
′2  2

u
ωNk

c
u

ωNk

cω
=uY

22



.                          (10) 

 

Integrating Eq.(10) and setting the constant of integration to zero yields:  

 

                 
  3

2

2

02

2

2

0

2
2

3
u

ωNk

c
u

ωNk

cω
=uY

22



                               (11) 

 

or   

  uAu
kω

c
±=uY 









3N

10 ,  where 
 

2

0

2

0

2 3

c

cω
=A


. 

              (12) 

 

Substituting Eq.(3) into Eq.(12), we obtain 
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uAu
ωk

c
±=uξ 









3N

10 .   

           (13) 

 

Separating the variables in Eq.(13) and then integrating, by setting the constant of 

integration to zero, y ields: 

 

                                        

ξ
ωk

c
±=

u)(Au

du










 3N

10 .  

       (14) 

 

Finally, by completing the integration in Eq. (14), two cases of traveling wave 

solutions of the longitudinal motion equation are obtained (in a nonlinear magneto-

electro-elastic circu lar rod) after a straightforward algebraic manipulat ion.  

 

If 
 2

20
0

ω c
>

N


 we obtain the following hyperbolic traveling wave solutions 

t)u(z, : 

 

 
   

 
















tωz

N

cω
h

c

cω
=t)(z,u

2

0

2
2

2

0

2

0

2

1
2ω

1
sec

 3
.                         

(15)

 

 

   
 

















 tωz

N

cω
h

c

cω
=t)(z,u

2

0

2
2

2

0

2

0

2

2
2ω

1
csc

 3
                      

(16) 

 

Eq.(15) and Eq .(16) are solitary wave solutions for the longitudinal wave motion  

equation of a magneto-electro-elastic circular rod.  

 

If  
 

0
2

0

2

<
N

cω 
, Eq. (15) and Eq. (16) reduce to periodic wave solutions as 

follows: 
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 

 





















 
tωz

N

ωc

c

cω
=t)(z,u

22

02

2

0

2

0

2

3
2ω

1
sec

 3
                        

(17)

 

 

 
 






















 
tωz

N

ωc

c

cω
=t)(z,u

22

02

2

0

2

0

2

3
2ω

1
csc

 3
                                   

(18) 

 

 

Eq.(17) and Eq.(18) are periodic wave solutions for the longitudinal wave motion  
equation of a magneto-electro-elastic circular rod.  Note: In Eq. (15) - Eq. (18), 

0±cω  .  

                            

Remark:  The valid ity and reliab ility of the obtained res ults was checked with help 

of Maple, by substituting them back into the orig inal equations and found them to be 

correct. Numerical accuracy, however, in the results Eq. (15) - Eq. (18) may impede 

in applications. This depends on the default accuracy of the number representation 

of the numerical computation engine. For example, in Eq. (16), the large x the right 

hand side (RHS) exhib ited much better numerical accuracy than the left hand side 

(LHS). Depending on the computer’s decimal d igits representation d, inaccuracy 

may represent a major factor.  

 

Consequently, care has to be taken in determining which representation to choose 

for industrial applicat ions. If it is mandatory to have well -conditioned numerical 

evaluations and the arguments for the circular or hyperbolic functions are low or 

high, then choose either our un-simplified results Eq. (15) - Eq. (18), or the 

following symbolic simplifications of our results Eq. (19) - Eq. (22):  

 

 

 













 tωz

A

ω

c
+

=t)(z,u

3N
cosh1

2A

0

1
      

                                  (19)
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 













 tωz

A

ω

c
=t)(z,u

3N
cosh1

2A

0

2
       

     (20) 

 

 

 
















tωz

A

ω

c
+

=t)(z,u

3N
cos1

2A

0

3
 

  

 

                   (21)

  

              
 

















 tωz

A

ω

c
=t)(z,u

3N
cos1

2A

0

4
       

    (22) 

 

 

Note the similarity of the hyperbolic identities Eqns.(19, 20) with the circular Eqns. 

(21, 22).  

  

The achieved mathematical or 'symbolic' correctness disguises a common numerical 

conditioning problem, omnipresent in the literature. It escapes awareness because 

solutions such as the those yielded by KdV equations are usually given as a squared 

hyperbolic function. 

 

For small parameters just these squared hyperbolic functions are much worse than 

the reduced-order equivalents Eq. (19), Eq. (20) presented herein. In conclusion, 

reduction of the order of solutions  obtained here remarkably improves the numerical 

accuracy, for s mall arguments.                                                                      
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RESULTS AND DISCUSSION  

Now we will discuss the wave features of our obtained solutions. The obtained 

solutions Eq.(15) and Eq.(16) are solitary waves and Eq.(17 ) and Eq.(18) are plane 

periodic waves. The wave amplitude is 
 

2

0

2

0

2 3

c

cω
=A


, the wave number is 

 
N

cω
=k

2

0

2

2ω

1 
 and the wave length is 

Ac

ωπ
=

k
=λ

3N42π

0

. For 

solitary waves to exist 0c>ω  and the wave length is inversely proportional to the 

square root of the amplitude A, i.e., 
A

λ
1

  . On the other  hand, if 0c<ω  the 

waves are periodic and also traveling. 

 

Solitary waves can be obtained from each traveling wave solution by setting 

particular values to its unknown parameters. By adjusting these parameters, one can 

get an internally localized mode. We present some Maple-p lots of solitary waves 

constructed by taking suitable values of involved unknown parameters  to visualize 

the underlying mechanis m of the original equation. In Figures1- 4. 

    

The Eq. (15) exhib its bell-shaped soliton solutions. It has infinite wings or tails. Th is 

soliton is referred to as non-topological. This solution does not depend on the 

amplitude and high frequency. Figure 1  shows the shape of the exact bell -shaped 

soliton solution i.e.,  non-topological soliton solution of the MEE equation. (The 

figure only shows the shape of Eq. (15) with wave speed ω = 2, 10 c   and N = 1 

within the constraints -3 ≤  z, t  ≤ 3).  
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Fig. 1: Bell profile of Eq.(15) for wave speed ω = 2, c0 = 1 and N = 1,  

within the constraints -3 ≤  z, t ≤ 3. 

 

 

The Eq.(16) is the singular soliton solutions of the MEE equation. Figure 2 shows 

the shape of singular solitons of Eq.(16) for a wave speed of ω = 2, 10 c   and N = 

-2 within the constraints 3 ≤  z, t ≤ 3. 

 
Fig. 2: Singular soliton of Eq.(16) for wave speed ω = 2, c0 = 1 and N = -2, 

 within the constraints -3 ≤  z, t ≤ 3. 



 

Caspian Journal of Comput ational & Mathematical Engineering ... 2016 , No.2 

 
 

Caspian Journal of Comput ational & Mathematical Engineering               
2016 , No.2    (September  2016 ) 
www.CJComputMathEngin.com 

17 
 

 

 

Eq.(17) conveys the periodic traveling wave solutions of the MEE equation. Figure 

3 shows the shape of these for wave speed ω = 2, 10 c  and N = 1 with in the 

constraints -3 ≤  z, t ≤ 3. 

 

 

Fig. 3: Periodic profile of Eq.(17) for wave speed ω = 2, c0 = 1 and N = 1, 

 within the constraints -3 ≤  z, t ≤ 3. 

 

 
Eq.(18) is the periodic traveling wave solutions of the MEE equation. Figure 4 shows the 

shape of periodic solution of Eq.(18) for a wave speed of ω=2, 10 c   and N = -2 within the 

constraints -3 ≤  z, t ≤ 3. 
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Fig. 4: Singular profile of Eq.(18) for wave speed ω = 2, c0 = 1 and N = -2, 

within the constraints -3 ≤  z, t ≤ 3. 
 

 

CONCLUSIONS 

By using the functional variable method we obtained solitary and periodic wave 

solutions of longitudinal wave mot ion equations of a nonlinear magneto-electro-

elastic circular rods. The consistency of the method and the reduction of 

computational effort demonstrate its wider applicability. The solution procedure is 

very simple and the traveling wave solutions are expressed by hyperbolic, and 

trigonometric functions. The results also show that the method is simple and 

effective, and can be applied to many other nonlinear wave equations arising in 

mathematical physics.  
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Problem for Improperly Elliptic Equations 
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Abstract 
An effective method for solving Riemann type problem for Improperly elliptic 

equations in complex plane is presented. We reduce the problem  to a number of 

boundary value problems for properly elliptic equations, which can be  solve  by 

grid  method. 
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Introduction 

 
Let D  be a simply connected domain in a complex p lane with boundary D    , 

and consider the equation  [5] 
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without loss of generality, we suppose q p  ; that is   1
 
known as an Improperly  

Elliptic Equation  [ 5]  . Last q p  boundary functions are real.  

Here, we will reduce the Riemann problem for the improperly equation  1

   2 , 2a b , to a uniquely solvable Dirichlet problems for properly elliptic 

equations; to determine real and imaginary part of the solution separately. 

By assuming  
2

u u
U u


   and using    2 , 2a b  we get that the function U  

satisfies the problem  
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This problem is a Dirichlet problem for q -harmonic equation which is uniquely 

solvable, so it remain to find u .  

We represent the solution of the problem  1 -  2 ,a b  as  

                       ,u V i w V U iW                                       
      

 4  
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where w  is the real valued function, satisfying the condition 0pw  . 

From  2a  we have  
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On the other hand from  4
 
we have : u w V w W     . 

By substituting, we get  
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Now, by solving Dirich let problem for P - harmonic equation  
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We will find the solution w . We see, that the functions U  and w  are determined  

uniquely, but the function W  is determined uniquely up to  
2

q p  real constants. 

So for the uniqueness of the solution we must add  
2

q p  complementary  

conditions.  

The method was applied for second  , and third order equations in a rectangle  [1] , 

[4 ] , and was experimentally tested .  

Now ,  we consider the elliptic equation  
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 satisfy Holder condition on  , 

1f  with first order derivative 

satisfy Holder condition on   and 
2f  satisfy Holder condition on  ) are given 

functions on  . We are seeking the solution of  5 ,  6  in the class of functions
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The general solution of (1) can be represented in the form: 

         2

0 1 2 3 4 ,u z z z z z z z z          

where  
0
, 1 4i i     are arb itrary analytic functions in D . 

We may replace  
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We have a Dirichlet prob lem for the determination of U : 
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The solvability and smoothness of the solution of problem  8  follows from the 

general theory of elliptic problems [3] . From the unique solution of Dirichlet  

problem for third harmonic equation  8  we have U  on all mesh points and a 

formula for representing unique solution of above Dirichlet problem may be found 

in  [ 2 , p.149]. 

Applying bi-harmonic operator 2  on  real  part of u  in  7 ; we get into  
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Therefore  

                     
  2

02 ,U z                                      9  

where 
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is analytic in D , so  0 z
 
is harmonic function. 

 

From  9  we have 
 

        
        2

0 0 0

1
,

2
U z z z

x y
  

 
        

 
                    

            
 10  

Denoting   1 0u z  and   1 0v z  , we have Po incare problems fo r the 

determination of  these  functions  
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           

1

21

0,

1
,

2

u

u
U

x


 

 
  

 

           11  

and  

     

1

21

0,

1
,

2

v

v
U

y


 

 
  

 

                                     12  

Solving these problems, we get: 0

1 1 1 2u u c y c    and 0

1 1 3 4v v c x c   , where 
0

1u ,

0

1v
 
are uniquely determined functions and  1,..4jc j   are arb itrary real constants. 

We must mention that by Cauchy – Riemann equations we have 
1 3c c  , therefore, 

we get a representation 

0

0 1 0C iC z      , 

Here 
1C  is complex and 

0C is real arbitrary constant and 0 0 0

1 1u iv    is uniquely 

determined analytic function. By integration, we have               

                                          2

0 0 0 1 2 ,z w z i C z C z C                                 13  

where 
0C  is real constant, 

1 2,C C  are arb itrary complex constants, and 
0w  is 

uniquely determined function . 

Now, replacing 
0  in  7 , we get  

            
22 2 2

0 0 1 2 1 2 3 4u z w iC zz C zz C z zz z z z z         
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           
22 2

0 0 1 1 2 2 3 4u z w iC zz zz C z z z C z z z          

            

              

22

0 0 1 1 2 1 1 2

2 2

2 2 3 3 4 4

u z w iC zz zz C z z z i C z z z

C z i C z z i z z i z

    
          

  

           
  

 

            22

0 0 1 1 2 1 1 2u z w iC zz zz C z z z i C z z z    
          

  
 

          2 2

2 3 4 2 3 4C z z z i C z z z         
  

 

i.e. 

           
22

0 0 1 2 3 4 ,u z w iC zz zz z z i zz z z       
                                               

 14  

where  

     1 1 1 2z C z z z     ,      2

2 2 3 4z C z z z    , 

     3 1 1 2z C z z z      ,       2

4 2 3 4z C z z z      

are arbit rary analytic functions. 

 

 

Finally, we represent the solution in the form  
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             
22

0 0 , , ,u z w z iC zz H z z i h z z                        15  

where      1 2,H z z zz z z    and      3 4,h z z zz z z   . Here 

0w  is known function, and ,H h  are real valued functions which satisfy the 

condition 2 2 0H h     and constant 
0C  is arb itrary real constant. 

Now, we must determine real valued functions ,H h . These functions satisfy bi-

harmonic equation: 
2 2 0H h     and from  15  

    2

0 , ,U z w z H x y   

Hence, we have following Dirichlet conditions on the boundary    

    

    

2

0 0

2

1 0

,

,

H f z w z

H
f z w z

N N

 

 

 

 
   

 

 

Finally we get the Dirichlet problem for bi-harmonic equation  

                         

    

    

2

2

0 0

2

1 0

0 ,

,

,

H

H f z w z

H
f z w z

N N

 

 

 

 

 
   

 

     16  

 which has a unique solution. 



 

Caspian Journal of Comput ational & Mathematical Engineering ... 2016 , No.2 

 
 

Caspian Journal of Comput ational & Mathematical Engineering               
2016 , No.2    (September  2016 ) 
www.CJComputMathEngin.com 

32 
 

Analogously, we get  

      
22

0 0 , ,u z w z C zz h x y      

i.e.
 

                                     
22

0 0, ,h x y u z w z C zz             17  

and we have the same boundary problem for determination of function h . This 

problem includes arbitrary constant 0C , therefore must be modified .  

So, first we find the function 
0h , by solving Dirich let problem for b i-harmonic  

equation  

                                 

 

 

2

0

2

0

2

0

0 ,

,

,

h

h zz

h zz
N N




 

 



    
   

    

                       18  

and then, we solve following problem 

       

     

2

1

2 2

1 0 0 0

2 21

0 1 0

0,

,

,

h

h u z w z f z w z

h
u z w z f z w z

N N N N

   

 

 

     

        
            

       

 

 

        

 19  

These problems are uniquely solvable ,and the solution of  19 will be 1 0 0h h C h  . 
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Replacing the function h  into  15 , we find  

          
22

0 1 0 0 0, , , ,u z w z H x y i h x y C h x y i C zz      

or  

        22

0 1 0 0, , ,u z w z H x y i h x y i C zz h      

So, during above argument we had proved that by using our algorithm we can find  

the solution of the problem  5 ,  6  with only one constant 
0C , and linearly  

independent solution for corresponding homogeneous problem is  

  2

0 0 ,u i zz h   

Here 
0h  is bi-harmonic function and uniquely determined from prob lem  18 . 

Thus, applying the same method as in previous points, we reduce the start problem 

to the boundary value problems for properly elliptic equations with real coefficients. 
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