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Abstract: We develop an extension of the algebraic formulation of the Operational
Tau Method (OTM) based upon shifted Chebyshev polynomials. This extension
enables us to improve numerical precision of solving Fractional Neutral Functional-
Differential equations (FNFDEs) from Bhrawy and Algamdi [8] as we show in this

paper.
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1. INTRODUCTION

The tau method was introduced by Lanczos [1] in 1938 for solving ordinary
differential equations. In 1981, Ortiz and Samara [2] presented a new approach to
the tau method by proposing an operational technique for the numerical solution of a
single nonlinear ordinary differential equation with some supplementary conditions.

The main advantage of the operational tau method based on shifted Chebyshev
polynomials is to reduce the fractional neutral functional-differential equation to a
set of algebraic equations. The main advantage of the OTM is its simplicity, and is
more convenient for computer algorithms.

During the last thirty years considerable work has been done in the development of
this technique, its theoretical analysis and numerical applications [3], for numerical
solution of many problems such as partial differential equations, Integral equations,
Integral-differential equations and so on [4].

Mathematical folklore sets the birth of the concept of fractional calculus in the year
1695 by the answer to a question raised by L'H6pital(1661-1704) to Leibniz (1646-

1716), in which he sought the meaning of Leibniz’s notation % for derivativesif
11

=205 e In his reply, dated 30 September 1695, Leibniz wrote to

L'Hopital(quoting from [5]) “this is an apparent paradox from which, one day, useful
consequence will be drawn...”.

The first book devoted exclusively to the subject of fractional calculus, is the book
by Oldham and Spanier [5]published in 1974. A much later book, by Podlubny [6],
is from 1996 and the book by Kilbas, Srivastava and Trujillo [7] appeared in 2006.

In recent years, it has turned out that many phenomena in viscoelasticity, fluid
mechanics, biology, chemistry, acoustics, control theory, psychology and other areas
of science can be successfully modeled by the use of fractional order derivatives [9].

The objective of this paper is to develop an extension of the OTM such that
equations are solved with improved precision. This is exemplified by taking
problems from Bhrawy and Alghamdi[8].
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2. DEFINITIONS

In this section, we state definitions of fractional calculus [8-10], as needed in the
sequel.

Definition 1.

The Riemann-Liouville fractional integral operator of order 6 (6 > 0) is defined as

J°f(H) = F(e)f (t —s)?71f(s)ds, 6>0t>0 (2.1)

JOr@® =f@®

Here T is the Gamma function. Some of the most important properties of operator J°
for f(t), are as follows

i) JOIef @) =0 f (1)

.. sy — r(y+1) O+y
ii) Jot = 0D +1)t (2.2)

i) @) =90 F (D)
(2.2)

Definition 2.

The Caputo fractional derivatives of order 6 of f (t) are defined as

1
DOf(®) = "0 D™F(®) = fom—gs f (=m0 f(s)ds

(2.3)
t>0, m—-1<6<m

where D™ is the classical differential operator of order m . Also
Dfc=0 (C is a constant),

0 LEN,, u<l[6o]
Dot =4 Tu+1)
— k0, € No,u=10] or N, > |0
T+ 1-0) HENy,u=[0] orug u> 16l
2.4
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3. THE OPERATIONAL TAU METHOD

Here, we state some relevant properties of the tau method. We define the scalar
product (, ), for any integrable functions y(t) and ®(t) on [a,b], by (Y (t), @(t)),, =

f: PY(®)D()w(t)dt,where |[P]12 = W), P(t)), and w(t) is a weight function.
Let LZ [a, b] be the space of all functions f: [a, b] — R, with [|f]|?, < .

The main idea of the method [10] is to approximate u(t) € L?[a,b]. Let ®, =
{D;(t)}2, = DT, be a set of arbitrary orthogonal polynomial bases defined by a

*

lower triangular matrix @ and T, = [1,¢,t2,...]"

The tau method is designed to convert linear or non-linear differential equations,
delay differential equations or a system of these equations to a system of linear
algebraic equations based on these three simple matrices

[l e N i)
S OO -
o RO O
ONO O
S OO O
OO O wmiek
“OO wir O
OoOnlr O O

In the sequel we need operators on polynomials, stated in a lemma as follows.

Lemma 1.

Suppose that u(t) is a polynomial as (t) = Y72, u;t' = uT, , then we have [4]

Dru(t) = ;—;u(t) = un'T, r=0123,..
(3.1)
tSu(t) = uusT; s=0,1,2,3,..
(3.2)
X
J u(t)dt = upT, — upT, p is matrix p.

a
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(3.3)

For a proof see [4]. ]
Let us consider

BAu(t) = TiLow; @;(t) = udT,

to be an orthogonal series expansion of the solution, where u = {u;};2, is a vector of
unknown coefficients, @T; is an orthogonal basis for polynomials in R [4].

4. SHIFTED ORTHOGONAL POLYNOMIALS

Chebyshev and Legendre polynomials are interesting examples of polynomials
bases defined by a matrix. In this section we define shifted Chebyshev polynomials.

The Chebyshev polynomials are defined on [—1,1] with

{ To(x) =1,T1(x) = x,
Tis1(x) = 2xT;(x) = T;_,(x), i=1,23,..

[To (), Ty (%), To (%), ... ]" = TXy

0 0 O 1

0 1 0 0 X

.where T=|-1 0 2 0 ,Xx=x2
0 4 :

and shifted Chebyshev polynomials T on x € [a, b],a < b, are defined as
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2x — (b +a)
b—a

>Tio(x) - Tio_1(x), i=123..

To(x) =1,T,(x) = xela, b]

2x— (b +a)

Ti°+1(x) = 2( bh—a

5. THE OPERATIONAL TAU METHOD FOR FNFDE AT WORK

Consider the following Fractional Neutral Functional Differential Equation from [8]
DO (u(®) + a(®u(pnt))

= Bu(t) + Y4 b, (£) D" u(p,t) + f(¢), t=>0
(5.1)

with the initial conditionsy™ ' ¢;,u(™ (0) = ;.
Here a, b,(n =0,1,2,...,m — 1) are given analytical functions,

—1<0<m , 0<yg<y; < <yYm1 <0 and B, p,, cin, A; denote given
constants with 0 <p, <1(n=0,1,...,m).

Now we apply the tau method and use the following process. By equations (2.3),
(3.1) and (3.4), we obtain

DOu(t) = J™ D™ (ueT,) = J™° (udn™T,) = udn™™ °(T,). (5.2)
By definitionl and relation (iii) we get
jm_e(Tt) = Um_g(l))]m_g(t)r ’]m—G(ty)’ ]* =

r(em=0 r(z)tm-6+1 [(y+1)tm=6+Y .
e Tonesz " Tonceryany w1 =11

(5.3)

where I is an infinite diagonal matrix with elements

I(i+1)

— [tm—6 sm-0+1 m—6+y =)
, M=t L »oen b v Il r(m-6+i+1)’

i=0,12,..
By decomposing t™ 9+ (y = 0,1, 2, ...) with Chebyshev polynomials
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tm- o+y _Zl an+L (I)(t) = a)/ (th ,ay [ayO' ayll ]

(5.4)
we obtain with
I =[ay®T;,a,®T;, ...,a,PT;, ... | = APT, ,
(6B)A =[ag,as,..,a,,. ]"
Then, by substituting equation (5.3) in equation (5.2), we have
DPu(t) = u® n™ I'll = udbn™ I'A®PT, = uVOdT,, V =InmIA
(5.6)
For delay functions, we have
u(pmt) = udT, (t), withT, (t) = [1,p,(t), p.(0),....]".
(5.7)

By approximating each p,,(t)as p,,(t) = Zj-‘;opmjtf, we obtain

1 1
Ty 6 = P10+ Pizt + -+ piat™ + | _ |pyo p11 p12
pm D20 + P21t + =+ pont™ + - P20 p21 pzz

If we let A; to be the last coefficient matrix, thenT,, (t) = A;T,. By substituting this
in equation (5.7) we have

u(ppt) = uPA;T, ().
(5.8)

By approximating a(t) and b,(t) with polynomials a(t) = X1_, ait®, b,(t) =
Y=o bt

we  get, with help of a=3Y"_,auudbAunm™IAD, the result
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De(a(t)u(pmt)) D=0 Akt “udA, nmme th Yk Oaku(bAz.u nmjms GT
yn o apuPAuFnmIADT, = aT, , (5.9)

And also, with b = Y™ L3 b ud®A, u*n™I'Ad, we obtain

m-1 n

ba(OD U@t = > Y byt udh ™I,

n=0 k=0

n
> bty I, =
=0 k=0

iMi

m—1

S

ymolyn o b uPA,un™IrADT, = bT,, (5.10)
=0

For f(t) we havef (t) = fT, . Also for fu(t) where f is a constant and f§ = fud
we have

Bu(t) = pudT, = BT, (5.11)
wheref is a diagonal matrix with elements g.
Now we substitute equations (5.8)-(5.11) into equation (5.1)

uWOT, + G 1®T, = O 1OT, + bd 1T, + fP 1T,

We rewrite the residual matrix R(x)with R = [uV +adod~!'— o1 — ho1 —
fo1] into

R(t) = [uVOT, + @ '@T, — fO'OT, — bO 1®T, — fO~1OT,]
=uV +ad ' —fo 1 - ho~t — fO DT, = ROT,

Setting the residual matrix equal to zero by R = 0, or applying orthogonality of the
inner  products(R(x), @,(x)), =0, k=0,1,..then by the supplementary
conditions in equation (5.1) we have

o Cnun" @To = A; .
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Thus we obtained an infinite algebraic system that is easily solvable.

6. COMPUTATION OF THE ERROR FUNCTIONS

In this section, an error estimation for the approximate solution of equation(5.1) with
supplementary conditions is obtained. Let us call e,(t) = u(t) — u,(t) the error
function of the Tau approximants u, (t) to u(t) where u(t)is the exact solution of
equation (5.1). Therefore, u, (t) satisfies the following equations

D (up () + a(®Oup(Pmt)) = Puun(®) + W b (D ™, (pot) + £, (1) +
H, (1), (6.1)

Ml cnmu,™M(0)=2;, t=20,-1<0<m,0<y,<y; < <V¥moy1 <0.

The perturbation term H,(t) can be obtained by substituting the computed
solution u, (t) into the equation

Hy (8) = D (uy (£) + a(Ouy (pmt)) — Buy () — Tmd by () DY u(p,t) — £(0).

We proceed to find an approximation e,, y (t) to the error function e, (t) in the same
way as we did before for the solution of equation (5.1). Note that N is the degree of
approximation of u,, (t). By subtracting equation (6.1) from equation (5.1), we have

DO ((u(®) — up () + a(®©) (W(Pmt) — up(Pmt)))
= Bgli(t) —uy(t))

) ba(OD" (upn) = n (o)) + (FO) = (0)) = Ha(0),
n=0

- (m)
I’ln=01 Cin (u(n) (0) —Up

0)) =0,
Or

D? (e, () + a(t)(en(pm?))

m—1

= Blen(®) + ) bu(O)DT(en(pnt)) = Ha(®)
n=0
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Mt cin (e, ™ (0)) = 0.

It should be noted that in order to construct the approximate e, y(t)to e, (t), only
the related equations (3.4) through (6.1) needs to be recomputed and the structure of
the method remains the same [3-10].

7. ILLUSTRATIVE NUMERICAL EXAMPLES

In this section some numerical examples are given to clarify the high accuracy of the
method.

Example 1.
Consider the following FNFDE from [8]

u%(t) =u(t) + u% (%) + u% (g) + %ug (2) + i?(t%) — _F(? t% —tt
re r(z)
re tz @ ts TG ts T t3
+1% - o G2t G2 - (2 + = (3)2
r)? % @’ F(z)

I'(5 r'i4
”()3 “()‘ te[01]

zr(z) ar(3) *

With
u(0) =0, u(@ =0 u"(0)=0,
The exact solution is u(t) = t* — t3.

The result for the approximate solution by OTM and the Exact solution for this
example are given in Tablel.
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Example 2.

Consider the following FNFDE from [8]

wZ(e) = —u(t) + %u (5) +1.3 (

Where

t 1
g0 =—[ -9
rz)-°

3/ 3

and the exact solution is u(t) = e®.

The result for the approximate solution by the OTM and the exact solution for

example 2 are given in Table2.

t

3

1t
Sds + et ——e3 ————

)+g(t), u(0) = 1,

t

3rG) %

In Table 3, we list the absolute errors obtained by the OTM.

Table 1. OTM and the Exact Solution for Example 1

1s
(t —s) 2e3ds,

t €[0,5]

t
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9
1.0

Uotm
-0.000900000000013
-0.006399999997823
-0.018899999882211
-0.038399999963938
-0.062499999999480
-0.086399999928974
-0.102899999992440
-0.102399999993932
-0.072900000003533
-0.000009997050657

UExact
-0.000900000000000
-0.006400000000000
-0.018900000000000
-0.038400000000000
-0.062500000000000
-0.086400000000000
-0.102900000000000
-0.102400000000000
-0.072900000000000
0.000000000000000
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Table 2. OTM and Exact Solution for Example 2

0.5
1.0
15
2.0
2.5
3.0
3.5
4.0
4.5
5.0

UotMm
1.648721270700139

2.718281828459005
4.481689070337228
7.389056098932960
12.18249396072259
20.08553692327158
33.11545195838827
54.59815003142499
90.01713129899351
148.41315909661534

UExact

1.648721270700128
2.718281828459046
4.481689070338065
7.389056098930650
12.182493960703473
20.085536923187668
33.115451958692312
54.598150033144236
90.017131300521811
148.41315910257660

Table 3. Absolute errors using OTM at n=15 for Example 1 and 2

t Absolute errors for t Absolute errors for

Example 1 Example 2
0.1 1.3000e-14 0.5 1.1102e-14
0.2 2.1770e-12 10 4.0856e-14
0.3 1.1779-10 15 8.3755e-13
0.4 3.6062e-11 2.0 2.3092e-12
0.5 5.2000e-13 2.5 1.9117e-11
0.6 7.1026e-11 3.0 8.3911e-11
0.7 7.5600e-12 35 3.0404e-10
0.8 6.0680e-12 4.0 1.7192e-09
0.9 3.5330e-12 4.5 1.5283e-09
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1.0 9.9971e-06 5.0 5.9612e-09

We have done these computations by OTM for n=15. In all computations, in the first
step with Maple 18 we obtained the @ and A matrices from the section 4on
Chebyshev polynomials and equation (5.5).Then we continued the methodas
explained in the section on the Operational Tau method via Matlab R
2011b(7.13.5.564).

CONCLUSION

In this paper, two examples of the FNFDEs have been solved successfully by the
operational tau method on bases of Chebyshev polynomials. This method reduced
the FNFDEs to a system of linear algebraic equations, including conversion of the
delay parts of the desired FNFDESs to some operational matrices.

The solution obtained using the suggested method shows that this approach solves
the known problem from Bhrawy and Alghamdi [8] effectively and with far
exceeding precision.

From the rexamples considered here, it can be easily seen that our extension of the
OTM obtains results as accurate as possible.
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1. Introduction

In this note stochastic partial differential equations of the form:

dv(x,t) = dB, (t)+ f(x,t, Lu(x,t))dt, (1.2

1
are considered, where 0 < H < > t>0,xeR",

v(x,t) =

—a“;t(:,t) — Lu(x,t), 1.2)
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Lu= > a,(x)D%,Lu= > b, (x)D,

|gl<2m |gl<2m-1

DY = qul...D:n,Dj :ai’0<a <1,
X

j
R" is the n-dimensional Euclidean space, ¢ =(0,,...,q,) is an n-dimensional

multi index |q|=q,+...+0, , By, (t) is fractional Brownian motion with Hurst

parameter H € [0,%] , B, (0)=E[B, (t)]=0, forall t € R = (—00,0) and

1
E[B,, (t)B, (s)]:EﬂsfH FIEPY —s—tP" s teR,

(E[X] denotes the expectation of a random variable X ).

1
If H== then B, (t) coincides with classical Brownian motion B(t). For

N

1
H# E ,By (t) is not a semi martingale, so one cannot use the general theory of

stochastic calculus for semi martingale on By, (t), (see[1],[2],[3]).

Denote by K™ the linear operator defined on the set of all step functions to a subset
of the set of all square integrable function L,[0,T], such that:

(3006 = K, (05 0(9) + [ o) - T
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where

PO IR PPN S SPRURE SP
KH(t,s)-(F(HJrE)j (t—s) 2F(H 55 H,H+2,1 S),

I" denotes the gamma function and F (a, b, c, z)is the Gauss hyper geometric
function. The process By, has an integral representation:

B, (t) =1 K, (ts)dB(s), 13)
where B ={B(t) :t €[0,t]} is the Brownian motion defined by
B(t) = BI(Kiy) " (£po)]. (L4)

where (o) is the indicator function).

Let f :R— R suchthat E[f?(B, (t))] <, then

where
0
t//(t,a)):[—E{f(X+ BH(T—t)}} :
OX x=By, (T)
see [1].
It is supposed that:

(1) All the coefficients a,, bq satisfy a uniform Holder condition on R",

(2) All the coefficients aq,bq are bounded on R",
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0
v q - . . n
(3) The operator p Z|q\:2maq (X)D? is uniformly parabolicon R".

This means that

1™ > a,(x)y*=c|y[",c>0,

[gl=2m

for all X,y eR",y#(0,...,0), where y* =y .y™ | y[?= y? +..+y? and

c is a positive constant,
(4) The function fis continuous on R" %[0, T]xR .

It is assumed that

ou(x,0)

U(X,O) = Uy (X), T = Ul(X), (1.5)

where Uy, U, are given sufficiently smooth bounded functions on R".

Without loss of generality, we can assume that U,(X) =u,(X) =0

In sections 2,3 the solution of the stochastic Cauchy problem (1.1),(1.5) is studied.

The fractional Brownian motion has many different impotant applications with
amazing range. This amazing range makes fractional Brownian motion a very
interesting object to study, (see [4-7]).

2. Formal solutions

The solution of equation (1.2) is formally given by:
v(x,t) = B,, (t) + j; f (x,0, Lu(x,6)dé, 2.1)

where
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u(x,t) = aj(t) jgo jRnH(t —s5)* 7 (O)G(X, &, (t —s)* O)V(&,5)dE dO ds, (2.2

where G is the fundamental solution of the parabolic equation:

WD) - 5 5, (D).
ot lal<2m

The function G satisfies the following inequality:

| DG(x,&,t) [< st “exp[—c, 0], (2.3)
where
m . m 2m
= x=&ttr,m = :
p=Ix=¢&| LT om_1
m, = — 1 ,Cl:_n+|q|’
2m-1 2m

y and C, are positive constants, [8-10]. The definition of the function £ (&) can
be found in [8].

3. Fractional integral representation

Let I:+ be the fractional integral operator defined by
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1 £ (1) = ﬁ JZ(t —5)*1f(s)ds, & > 0.

Denote by 1% (L,[a,b]) the image of L,[a,b] by the operator 1 . The
a a

operator K, on L,(0,T) associated with kernel K (t,S) is an isomorphism
from

1
L[0.TTonto 1, 2(L,[0.T])

and it can be expressed in terms of fractional integrals by

1 1 1

(Kq 9)s)=12's7 12 7S 2,
(K 9)) = [KE.9) T (s)cs.

The inverse operator K,]l is given by

1 1

1
K—l — E_H DE_H H_E DZH
+g=s? D& s DX'g,

1
H+=
forall g € |0+ 2(L,[0,T]). If g is absolutely continuous, it can be proved that

1

H—l 1, = d
-1 = 21 2 2 ’ r— g
Kiwg=s “1% s* g'g e (3.1)
where D": is the fractional derivative defined by
a

f g(s)
r(1— o) dt Ja (t—s)*

+g()_
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see [3],[6]. A weak solution of equation (2.1) is defined by a couple of adapted
processes (BH ,V) , for every fixed X on a filtered probability space

(Q,F,P{F, :t€[0,T]}), such that
(8) By isan F, - fractional Brownian motion,

(b) v and B, satisfy (2.1).

Suppose that equation (2.5) has a weak solution. Then using the definitions of the
operators K, , K,]l and the representation(1.1), one can write equation (2.1) in the
form

\K&D:£KH05M§&5L (3.2)

Qno=sm+£4n9$,
17(x,s) = Ki'g(x,.)(s),

g(x,0) = j:f (x,5, Lu(x,s))ds.

1
Theorem 3.1. Let H < 3 and V be a weak solution of equation (2.5). If f isa

Borel function on R" x[0,T]x R and satisfies the linear growth condition
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| F(x,t,u) |<KC(1+|u)), (3.3)
for all ueR,xeR",te[0,T], (where C is a positive constant), then

g(x.)elg, 2(LIOT]).

proof. From (2.1), (2.2), (2.3) and (3.3) it can be deduced that
V(t) < B,, (t)| +Ct +C, j; V (s)ds,

where C, >0 is a constant and V (t) = Sup, | v(X,t)|. The last inequality leads
to

V(1)< B, (t) [ +C,fs €27 B, (0)|dO+C, (e -1).  (3.4)
Thus from (3.4) we get

[t V?(s)ds< C,[iB/ (s)ds+C,, (3.5)

where C, >0,C, >0 are constants. From (3.3) and (3.5), we get

9% (x,0)d0<C,T +C,[;B% (s)ds+C,, (3.6)
where C,,C, and Cj are positive constants.

It is easy to see that
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1y r()W“ 9" 2 g(x,9)ds|

1

Ix)ma 71092 (g o) (37)
The required result follows from (3.5) and (3.6).

1
Itis clear that K'g(X,.) € L,[0,T] as. if and only if g(X,.)e I::E(LZ[O,T])
as.

Let (% T) = exp[-[ n(x,5)dB(s) —% [T (x.5)as].

If f isbounded, then £'(X,T) defines for every x € R" a random variable such
that the measure P given by dP = ¢ (X, T)dP is a probability measure equivalent

toP. If Eﬁ denotes the expectation with respect to IS , then
EF[C(xT)]=1. (38)

From (3.1), (3.7), theorem (3.1) and Girsanov theorem, we see that V is an F, -

fractional Brownian motion with Hurst parameter H under the probability P, (see

[7D.

Lemma 3.1. If f isbounded ,then

E°[¢”(x, T)]<exp[C | (2 ~1)(a~1) | T],
where C is a positive constant.

Proof. We can deduce from the results in [ 7 ] that
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EPexp(~2a[ 7(x,5)dB(s) ~2a* [ 1 (,5)ds) =1,

forall « € R

Now

EP[Ce(x,T)]= Eﬁexp[— af n(x,9)dB(s) - [ " (x s)ds}

) o 1
< [EPEXpZ | S |.[0772(x,s)ds)2

On the other hand, using (3.1)
we get
11 H 1

|7(x,) |= sH7I05; sz (x5 Lu(xs))

<L
1

T ST
< s 2jo(s—9)2 02 do,
i -H)

where M| is a positive constant, (| f [<M,). Thus
Eexp[2| o +%|£772(x,s)ds < exp[2| & +%| M,TTI,

where M, is a positive constant.
Using the fact that
E°[¢“(xT)]=E [ (XTI,
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we get the required result.

We can deduce from (3.1) that the operator K,],l preserves the adaptability property.
In other words the process 77(X, S) is adapted.

Let b be a positive Borel function defined on [0, T]x R such that the following
integral.

bl , = [IOT ([b° (t.V)dV)gdt];

g

exists, where q >1,y > .
g-H

In this case we say that b belongs to Lq'y , then by using lemma (3.1) the results of

Naulart and Ouknine in [7] can be directly generalized to obtain the following
estimations

E _Eb(t,v(x,t))dt <cClibll,,,

E exp[[ bt v(x, t))dt < Q(ibll, )],

where C is a positive constant and Q is a real analytic function, [11].

Theorem 3.2. If f is continuous on R" %[0, T]x R and satisfies the Lipschitz
condition;

| f(xt,u)—f(xtVv)IKClu—vV]|

for all xe R",t€[0,T],u,veR, where C is a positive constant, then there is
weak solution v of equation (2.5). Moreover
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E[v?(x,1)] < .

Proof. We shall use the method of successive approximations.

Set

Ve, (1) =B, (1) + j; f (x,6, Lu,(x,6))d6,

u(x D =af [ 6t-9)"¢, (O)0G(X & t-5) ), (£ 5)ds dads,

Vo (x,t) =0.
Thus

Ck

Vi (%, 8) =V, (X, 1) [ (k=1)!

[[t-0)*1B,(0)|do.

it follows that the sequence {Vk} uniformly converges with respect to X to a

stochastic process V . It is easy to see that

1
(k +1)?

BV (0] < 3 S ELK+) v, () —v, (DY ]

This complete the proof of the theorem (see [10-21]).
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Abstract: An extreme extreme property of the Delaunay triangulation is proved.
Using this extreme property, the theorem is obtained, that the optimal mesh for the
numerical solution of the Maxwell equation is the Delaunay triangulation.

1. Introduction

The popular method for the numerical solution of some problems of mathematical
physics is the finite elements method. This method needs a mesh of triangles. The
convergence rate of the process of numerical solution of the problem by the finite
elements method depends on the geometrical configuration of the mesh.

In [2], [4] the Delaunay triangulation is recommended as triangle mesh for Maxwell
equation for electromagnetic field.

In the present paper an extreme property of the Delaunay triangulation is proved.
Using this extreme property, the theorem is obtained, that for the numerical solution
of the Maxwell equation the optimal mesh is the Delaunay triangulation.
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2. Delaunay Triangulation

Let {P}, be afinite set of points in the plane. A set {Dj }L of triangles is called

the triangle mesh with knots {P}.", , if the following conditions are fulfilled:.
a) The interiors of triangles are pairwise disjoint;
b) The set of all vertices of triangles is the set {P.}.", ;

¢) The union of triangles fills the whole of convex hull of the knots:

m
D; =conv{P},.

j=1

A ftriangle mesh {Dj}'j“:l is called Delaunay triangulation (see [1]) with knots

{P.}.., , if the following condition is fulfilled:

d) For any triangle D int S(Dj)m{lz’i}in:1 =0, j=1,...m,
where S(D) is the circumscribing circle of triangle D.
Let T={D, }]; be a triangle mesh with fixed set of knots {P}., .

For a triangle D we denote by A(D) the set of interior angles of D. Consider the
following expression depending on the mesh:

S(T) :i ) cota. (2.1)

j=l  aeA(Dj)

Theorem 2.1. The sum of cotangents (2.1) as a function on the meshes with fixed
set of knots reaches his minimum for the Delaunay triangulation with the same set of
knots.
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Proof. First we prove the assertion of Theorem 2.1 for the meshes, those contain
only two triangles. Consider a convex tetragon with vertices A, B, C, D, see Fig.1.

A

[
&
|

Fig. 1.

It is possible two triangle meshes with the knots A, B, C, D. The first mesh Tgp with
diagonal BD contains the triangles A ABD and A BCD. The second mesh Tac with
diagonal AC contains the triangles A ABC and A ACD. For the mesh Tgp the sum
of cotangents is

Sgp =Cto (e, +,) + Ctg; +Ctgay, +Ctg (o + o) +Ctger, +Ctger, .
For the mesh Tac we have
S, =Ctg(a, +a,) +Ctga, +Ctga; + Ctg (o, + o) + Ctger, + Ctg e,
If

o +a,+o;+a, >,
then the point D lies outside of the circumscribing circle of triangle A ABC
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and S(Tac)<S(Tep). Hence the mesh Tac is a Delaunay triangulation. If
o, to, ooy <,

then the point C lies outside of the circumscribing circle of triangle A ABD and
S(Tac)>S(Tsp). Hence the mesh Tgp is a Delaunay triangulation. In both cases the
assertion of Theorem 2.1 is valid.

Now consider a general finite set of points {P.}",, n>4. Among triangle meshes

with the set of knots {P,}{_, there is a mesh T with minimal sum of cotangents

(2.1). Assume that the mesh T is not Delaunay triangulation. Then there exists a
triangle A ABC from the mesh T, such that the circumscribing circle of A ABC

contains a knot D from {P,}, . It is easy to see, that the point C lies outside of the

circumscribing circle of triangle A ABD. Therefore S(Tac)> S(Tep). After the
change of the diagonals AC and BD in the tetragon ABCD we obtain a new mesh T'.

Observe that T, < T, while Tgy < T'. The inequality S(Tac)>S(Tep) implies
S(T)>S(T"), which contradicts the minimality of S(T). Theorem 2.1 is proved.

3. An Application to the Numerical Solution of Equations System

Let T={D,}].; be atriangle mesh with the set of knots {P,}; . A knot P, of mesh

T can be a boundary knot, which belongs to the convex hull of T, or an interior knot.
Let I(T) be the set of interior knots of the mesh T. Denote by V(D) the set of vertices

of triangle D, and by E; the set of triangles D from T connecting the knot P, :
E ={D;eT:ReV(D)} i=12..n.

Consider the following system of linear equations with respect to unknowns Xi:
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> >, ctga(v,D)x, =b, Pel(), i=1..N.

DeE; veV (D)nI(T)

(3.1)

where (v, D) is the interior angle of the triangle D at the vertex v, while k is the

number of knot v, i.e. V=P, .

Observe that the system (3.1) depends on the mesh T. We would like to solve the
system (3.1) numerically by the successive iterations method. The convergence rate
of the successive iterations depends on the geometrical configuration of the mesh T.

The well-known principle of diagonal domination, roughly speaking, states that the
fewer are the non-diagonal elements of matrix, the fewer iterations are needed for
solution of the relevant system of linear equations. In the extreme cases when all
non-diagonal elements vanish, we will need only one iteration for the solution.

We note, that the principle of diagonal domination is not law, and does not have any
proof.

Using Theorem 2.1 and the principle of diagonal domination we can obtain the
following assertion.

Lemma 3.1. Among triangle meshes with the fixed set of knots, the maximal
convergence rate of the successive iterations to the numerical solution of the system
(3.1) has the Delaunay triangulation with same set of knots.

4. Applications to the Differential Equations

We call differential equation in the medium a system of two two-dimensional
differential equations

L(AY), 4 (x.y)) =0, (4.1)
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2
ﬂ:F[A’%’%’ZX_?’N]' (4.2)

where L is a differential operator acting on two depending variables A and g . The

dependence F between the main variable (potential) A and the secondary variable
(the medium function) g is known. But the function F is complicate such that the

substitution (4.2) in (4.1) reduces to a complicate equation, which is practically
unsolvable, see [6], [7].

Example 1. The Maxwell equations for a magnetic field:

o10A 010A_, .

OXuOx oy poy

aAY (oAY
—p| |2 A 4.4
HET (mj+(wJ @4

where A is the desired potential function, g is the magnetic permeability of the

medium, Ps is a polynomial of 6 degree, O is a given function, see [8], [10].

We consider a class of two-dimensional differential equations (4.1), (4.2) satisfying
the following conditions:

(&) If u is piecewise constant, then the equation (4.1) is solvable.
(b) If A'is piecewise linear, then g is piecewise constant.

These conditions hold for the case, where the differential equations are reducible to
a variation problem, i.e. there exists a functional J(A, i (A)), which possesses an

extremum on the solution of the differential equations (4.1), (4.2). Then (4.1) can be
obtained from J by the Euler variation formula.

The usual method for the numerical solution of such problems is the finite elements
method. The considered domain is divided into small triangles (elements). The
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function A is assumed linear within each triangle, and by condition (b) « will be
constant within each triangle. Then the search of the extremum of functional J is
reduced to the solution of a system of linear equations in unknown values of
potential A at the vertices of triangles.

The usual scheme of solution is as follows. Starting from an initial piecewise
constant «2o  we obtain by the condition (a) the piecewise linear function A;. Then

from A; we obtain by the condition (b) the piecewise constant function x . Then
from u - ~we get A; etc. If this process of the successive approximations converges,

then the limit function A=1im_,_ A is the desired (numerical) solution of the
problem. Evidently, the equations (4.3), (4.4) satisfy the conditions (a) and (b).

Proposition 4.1. The convergence rate of the process of numerical solution of the
problem (4.1), (4.2) by the finite elements method, depends on the geometrical
configuration of the mesh, in the cells of which the medium factor x is constant.

The application of the finite elements method to the equations (4.3), (4.4) reduces to
the solution of following system of the linear equations (see [3], [5], [9]):

m

> Dlcota(v,D)u(D)x, =b, P el(T).

DeE; veV (D)nI(T)
Using Lemma 3.1 we can obtain the following assertion.

Theorem 4.1. For the problem (4.3), (4.4) for any fixed knots set the best mesh is
Delaunay triangulation.

Theorem 4.1. gives an opportunity to solve the problem (4.3), (4.4) using the
variable mesh method. First, the problem is solved with the help of rough mesh
with a small number of knots. Then, in the location where the error is at maximum, a
new knot is added, and Delaunay triangulation is constructed with the added set of
knots. The process continues till the error becomes sufficiently small.

Example 2. We solve the problem (4.3), (4.4) using the variable mesh method. The
Figure 2 shows the solution, while the Figure 3 shows the final mesh.
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Fig.2

We can see in the figure 3 that the intensity of mesh knots is considerably different
in the different sectors of the mesh, and corresponds to the density of the
equipotential curves on the same sectors of the research domain.
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Conclusions.

The sum of cotangents of interior angles as a function on the meshes with fixed set
of knots reaches his minimum for Delaunay triangulation.

For any fixed knots set, for Maxwell equation of magnetic field the optimal mesh is
Delaunay triangulation.
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Abstract: In this paper we show analysis on incomes or damages differences
between two options for Black-Scholes formula, of course numerical comparison
between European and Asian option in single option case about risk of price
jumping at maturity.

1.Introduction

European option depends on maturity time. There exists a risk of price jumping at
maturity. Asian option is more stable with respect to price jumping, because of the
averaging feature, Asian options reduce the volatility inherent in the option.

For Asian options the payoff is determined by the average underlying price over
some pre-set period of time. This is different from the case of the usual European
option, where the payoff of the option contract depends on the price of the
underlying instrument at exercise. Other advantage of Asian options is that these
reduce the risk of market manipulation of the underlying instrument at maturity.

Let St be a commodity price at future time t> 0 and K is an arbitrary fixed positive
constant. In this paper we consider the random variable St with lognormal
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distribution. Now by using the notation S(t)=St, the definition of call option for
European option and Asian option are respectively:

Pe(T):E[St-K]+,

Pa(T)=E[G(Sy)-K]-+,

Where X.= {)(3 i(( i g

geometric way. We assume that G(Sy)=G(m,T)=[S(t).S(t2).....S(tm)]¥™, where
T=ti+t+...+tn .The expectations E[St — K]+ and E[G(Sy)-K]+ are of interest for
engineering, because they can be interpreted as call options of European and Asian
derivatives.

and G(S) is average of S(t;) with i =1,2,...,m for example in

The aim of the present paper is to compare of numerical results between European
and Asian option in single option case about risk of price jumping at maturity. Our
numerical comparison between European and Asian options is meant for
engineering and financiers, and not for specialists of stochastic differential equations
because we don’t consider the solution of stochastic differential equations.

2. Related Definitions

European option income is E(S; - K)+ also Asian option income is E(G(Sy)-K)-that
we can use simple notation I; and I, for those respectively. Beside European option
outcome (or damage) is O; = (St —K)+ and Asian option outcome (or damage)is O, =
(G(Sy) - K)+ where G(Sy) is the geometric average or [S(t1 ).S(t2 )...S(tm )]¥™.

Also we need an analysis on incomes and damages in this paper, so we can calculate
incomes and damages for various initial times. We can get the graphics of incomes
depending on initial time.

The "external points" of graphics can be interpret as moments of "price jumping". It
is of "interest the cases” when, the maturity moment T is an “external point".
Jumping point is not "local external points" at all. Jump is the maximum of the
(absolute) different of price i.e. |p(k + 1) - p(k)| in a time segment. Consider the
"(absolute) relative different” |p(k+1)-p(K)|/p(K) .To find the time moments, where
the relative different is bigger than 0.03 (or 3 percent), jumping point is recognized.
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3. Theoretical Part

If So be a commodity price at today, S; be a commodity price at future time t > 0 and
K is an arbitrary fixed positive constant (named "Strike price"). The main result of
financial mathematics is called "Black-Scholes formula" that is described with
below theorems for single options that they have been proved in Paper[1].

We include the proof of Theorem 2, because we can’t found any elementary proof in
other books, in particular the book [2] by J.C. Hull, contains this theorem without
proof.

Theorem 1.(for European Option) Let S; be a commodity price,such that InS;
has normal distribution with mean In Sg—o? t/2 and variation &?t. Then

Pe(T)=E(St - K)+ = So¢(d1) - Ko(d2),
where:

di=(In So - In K+ o2 t/2)/(ov%)
do=(In So - In K— 2 t/2)/(ov%)

Theorem 2.(for Asian Option) Let S(t) be a commodity price, such that In S(t)
has normal distribution with mean In Sp - 2 t/2 and variation o? t. Then call for Asian
option is

m—1
2m?2

E[G(Sy) - K]+ = exp( - 2— To?) Sod(d: ) - K ¢(dl2)
where:

di = [In So - In K+ 62 T/(2m?).(2-m)][m/(cV)]

dz = [In So - In K— 62 T/(2m)][m/(cVT)]

For Asian options is convenient the notation Si=S(t). The definition of call of Asian
option is
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P a(T) = E[G(St) — K]+

where G(S)=G(m ,T) is geometric average of S(t) withi=1,2,...,.m,and T=t; +t,
+ ... +th

Proof :We must remember proved Lemma 2 in [1] that describes: Let & ~N(u,02).
For any positive number K, the following equality holds:

E(eé-K)+: el‘H'U'Z/Z . (I) (_H+az_an) K. ¢ (H_an)

o o
Now we have: In G(m,T)=[In S(t1)+In S(t2)+...+In S(tm)]/m.
Since In S(t) ~N(In So-o2t/2,52t) then In[G(m, T)]~N(M,V?)
where :M=InSo-T. ¢2/(2m)  (*)

andV?=T. g% /m? (**)

Also we can apply the lemma 2 for £&=In[G(m,T)]; So:
E[G(M,T)-K]J:=eM*+V*/2 $[(M+V2-InK)/V]-K.¢[(M-In K)/V].

Finally by substituting (*) and (**) in above formula, we obtain d; and d; according
to statements of Theorem2.

Note I. Consider the case when S(t;) = S(t2) = ... = S(tm), then Jump =0 and G(S;) =
St. In this case the difference between European and Asian options outcome is zero
(Clearly); also the difference between European and Asian options income must be
small.

Proof: Consider the case tj+1 = tj + 1. To prove this, consider the easy case m=2.

Thusti =to+ 1, t = t1+ 1 = to + 2 also in European and Asian option T=t, +tand T
=1 + tp = 2t + 3 respectively (in simple case with to = 0 we have: t = T in European
one and T = 3 for Asian one).

Also:

I1= E(St - K)+ = Sod(ds ) — Ko(d2)
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Where:

di=(In S - In K+ 6% T/2)/(cV/T)

d2=(In Sp - In K— 62 T/2)/(oVTt)

Beside:

L=E[G(S) - Kl = exp( - ZT) Sod(D1 ) - K $(D2)
Where:

D1=(In So - In K)[2/(cV/t)]

D2 = (In So - In K— 62 T/4)[2/(5v/1)]

With T =ty +t, = 2ty + 3.

Now suppose that In S; has standard normal distribution N(0, 1) therefore the
variance of distribution is ot = 1 and the mean of distribution is In Sp - 6?t/2=0
i.e. Sp =%

So:d; =1-Inkandd; =-InK. Then:

I1 = Sod(d1 ) — Kop(dz) = ... =e%® (1 - In K) + Ko(In K)

Also for Asian one we have: D; =1-2InKand D, =1/2-2 In K.
Then:

b=e e ¢(D;1)-KpD2)=...=e**p(1-2 In K)+Kd( 1/2 -2 In K)
By condition K = 1 we have:

11 =e%° (1) + $(0)

12 = e¥%(1) + $(1/2)
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We know: ¢(0) = 0.5, ¢(1) = 0.8413 and ¢(0.5) = 0.6915 therefore:

I - I; = 0.0285 near 3 percent (This subject pointed in the section of related
definitions).

Note Il. Now if in Asian option m = 1, then Black-Scholes formula is the same
European option.

T =tl:=tthen G(1, T) = [S(ts )]* = St . Also by replacing m = 1 in formulas of
Theorem.2 we have :

1-1
2x17°2

Pa(T) = E(G(L, T) - K)+ = E(St - K)+ = exp(=—=5)Sod(ch ) — Ko(dz ) i.e.
Pa(T) = E(St - K)+ = So(d1) — Ko(d2)

That is the same formula in European one, So Pa(T)=P¢(T) for m=1. But for
formulas of diand d2 we have too:

di =[In So - In K+ o2 t/(2*12).(2-D][1/(cvt)]
d2 = [In So - In K— 62 t/(2*1)][1/(cv/t)]

or:

d1 = (In So - In K+ 6® t/2).[1/(oVt)]

d2 = (In So - In K— 62 /2).[1/(c/t)]

Where is the same relations in European option as seen in Theorem 1.

But if m increases, then the difference between European and Asian options
increases or decreases? This question will study in the next sections with numerical
results according to visual basic programming.

It is shown in Table.3 that the gap of incomes in Asian and European options will be
bigger if m increases.
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Note I11.

Also "zero Jump" implies "zero |l —14|", using the continuity of Black-Scholes
formula parameters, we conclude that "small Jump" implies "small [l; —Tq|".
Similarly, if m is small, then the difference between European and Asian options is
small, because if m=1, then the difference between European and Asian options is
zero, also using the smoothness of Black-Scholes formula parameters.

4.Visual Basic Program

Using computer program (here with Visual Basic in Excel), we can calculate
incomes and damages for various initial times.

Here we must calculate and compare the European and Asian options in the cases,
when the maturity moment T is a "jumping point."

We consider some pair of European and Asian options with the sameparameters,
particularly with the same maturity time moments T andcompare what option is
better. It is important to notice that:

Income:11=E[S; - K]+, Outcome:O1= [St - K]+ in European option,
and

Income:1,=E[G(St )-K]+ , Outcome:O,= [G(St)-K]+ in Asian option,
Also:

"Profit or Loss = Income — Outcome™ in both of them.

5. Numerical Experiments

Suppose that S=S(t) be real oil prices of one market and the first tobe 20th price of
the market (for computation of p and 6?)with strike price K=65,and t=10.

We know from the proof of Theorem.2: & ~N(u,02) then S; =e° has lognormal
distribution or In S; ~N(In Sp-a2t/2,6*t).Also K can be any positive number and to
and t are natural numbers so that T=to+t. Thus o> can be estimated by: ¢ =
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1

market.

— ™. In S(t_;) here n=20 and S(t.1), S(t-2),..., S(t-20) are before prices of to in the

Therefore we get the following numerical results within two tables. The first table
for "European option™ and second one for "Asian option" could compare incomes
and damages of two formulas respectively.

Remember the columns of maturity T =t , S(T ) := Sy, "price jumping” of S(T ):
i.e. non relative Jumps = |S(tk+1 ) - S(tk )|, "Incomes:"l1 = E[S(t)-K]+ , 12 = E[G(S )-
K]+, "Outcomes": Oy = [S(T )-K]+ ,0. = [G(St ) -K]+and "Profit or Loss" are in the

below tables:
Table.1
T S(T) Jumps I O: Profit;
Loss
2008/09/12 103.36 0.44 52.70 38.36 14.34
2008/09/18 98.57 0.96 45.94 33.57 12.37
2008/09/26 106.85 0.80 38.37 41.85 -3.48
2008/10/31 71.18 1.95 16.51 6.18 10.33
2008/11/10 66.79 1.18 11.16 1.79 9.37
2008/11/14 61.19 1.64 12.37 0.00 12.37
2008/05/20 130.16 3.97 51.34 65.16 -13.82
2008/07/29 124.06 2.50 75.85 59.06 16.79
2008/10/13 83.63 341 32.67 18.63 14.04
Table.2
T G(S7) Jumps 12 02 Profit;
Loss
2008/09/12 103.14 0.44 52.51 38.14 14.37
2008/09/18 98.09 0.96 45.79 33.09 12.70
2008/09/26 107.25 0.80 37.68 42.25 -4.57
2008/10/31 70.20 1.95 11.28 5.20 6.08
2008/11/10 66.20 1.18 6.41 1.20 5.21
2008/11/14 62.00 1.64 8.52 0.00 8.52
2008/05/20 128.16 3.97 51.05 63.16 -12.11
2008/07/29 125.30 2.50 75.55 60.30 15.25
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2008/10/13 81.91 3.41 31.96 16.91 15.05

6. Conclusion
6.1 Comparison propositions with different jumps:

Proposition I: As we look in different cases between Table.1 andTable.2:

If Jumps <1
then|lz- 11| <
5.2

This subject was studied in Note I11.

Proposition 11: The different cases between Table.1 and Table.2 hasbeen prepared
in Table.3 for m=2, m = 4, m = 6 and m = 10 there isbelow relationship for
"Jumps" and "Absolute difference of outcomes":

If ||2 -y | >6
then Jumps >
1.17

Thus for positive number k we could be expected:

If|l2- 11|
>k then
Jumps >
k/5

We can see this property and a result of Table.3 in Graph.1 .

Table.3(]l - 11| with various m)

T Jumps m=2 m=4 m=6 m=10
2008/05/20 3.97 0.3 0.4 0.4 0.3
2008/07/29 2.50 0.3 0.4 0.4 0.3
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2008/10/31 1.95 9.6 9.2 8.2 5.2
2008/11/10 1.18 9.5 8.6 7.5 4.8
2008/11/14 1.64 7.5 7.0 6.2 3.9
Graph.1
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6.2 Comparison propositions with various m :

Propositions I1l1: Now we want to compare numerical results for instance
2008/10/10 date. Table.4 has all parameters which used in Black-Scholes formula in
European and Asian type with various m in Asian one.

Table.4
Method m S(T) d; d; odl) | ¢(d2) Exp | (@) Profit
or
G(St)

European 1 80.22 2.83 2.65 | 0.998 0.996 4186 | 15.22 26.64
Asian 2 84.07 3.98 3.85 1 1 0.9922 | 41.02 | 19.07 21.95
Asian 4 86.55 5.86 5.78 1 1 0.9896 | 40.74 | 21.55 19.18
Asian 6 87.83 7.63 7.56 1 1 0.9898 | 40.76 | 22.83 17.93
Asian 10 91.81 1152 | 11.48 1 1 0.9919 | 4098 | 26.81 14.18

In Table.4; | and O are "Incomes" and "Outcomes" respectively for each methods
with below commonly values:

So =80.22, t = 10, T = 2008/10/10, Jumps = 7.88, K = 65, ) = 4.658 and % = 0.003.

m-—1
2m"2

Also in Table.4: Exp = exp( Ti 6?) for Asian method with Ti=t; + t + ... + tm.
As seen in Table.4, while m increases then difference between outcomes of two
options is bigger too (Shown in Graph.2); but the difference between incomes of two
options is nearly fix.
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Graph.2

|02-01]
T4 oo
12

10

Proposition 1V: Now we want to study the case S(t) = S(t — 1) = ..=S(t - m + 1)
where jump vanishes and G(m, t) = S(t). Thus formulas for Asian and European
options compare together in Table.5.Notice that: “Incomes™: I, = E[S(t) - K]+ , I2=
E[G(St ) — K]+; "Outcomes™: Oy = [S(T ) - K]+, O2 = [G(St ) - K]+ (Case 1 for
European and case 2 for Asian type).
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Table.5
T Method m S(T) G(St) | Income | Outcome
2007/08/03 European 1 72.49 - 6.80 7.49
2007/08/03 Asian 3 72.49 72.53 6.75 7.53
2007/08/03 Asian 4 72.49 72.44 6.75 7.44
2007/12/31 European 1 88.87 - 22.69 23.87
2007/12/31 Asian 2 88.87 88.85 22.62 23.85
2007/12/31 Asian 5 88.87 88.89 22.60 23.89
2008/11/10 European 1 66.79 - 11.16 1.79
2008/11/10 Asian 4 66.79 66.79 3.62 1.79

As seen in Table.5 the difference between outcomes of European and Asian is zero,
according to Note | in Theoretical part. Also if m increases, then the difference
between incomes of ones will be increase. This last subject is presented in Graph.3

for 2007/12/31.

Graph.3

|15~
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